Computer Science Standards
Results
Showing 11 - 20 of 30 Standards
Standard Identifier: 3-5.NI.5
Grade Range:
3–5
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Describe physical and digital security measures for protecting personal information.
Descriptive Statement:
Personal information can be protected physically and digitally. Cybersecurity is the protection from unauthorized use of electronic data, or the measures taken to achieve this. Students identify what personal information is and the reasons for protecting it. Students describe physical and digital approaches for protecting personal information such as using strong passwords and biometric scanners. For example, students could engage in a collaborative discussion orally or in writing regarding topics that relate to personal cybersecurity issues. Discussion topics could be based on current events related to cybersecurity or topics that are applicable to students, such as the necessity of backing up data to guard against loss, how to create strong passwords and the importance of not sharing passwords, or why we should keep operating systems updated and use anti-virus software to protect data and systems. Students could also discuss physical measures that can be used to protect data including biometric scanners, locked doors, and physical backups. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)
Describe physical and digital security measures for protecting personal information.
Descriptive Statement:
Personal information can be protected physically and digitally. Cybersecurity is the protection from unauthorized use of electronic data, or the measures taken to achieve this. Students identify what personal information is and the reasons for protecting it. Students describe physical and digital approaches for protecting personal information such as using strong passwords and biometric scanners. For example, students could engage in a collaborative discussion orally or in writing regarding topics that relate to personal cybersecurity issues. Discussion topics could be based on current events related to cybersecurity or topics that are applicable to students, such as the necessity of backing up data to guard against loss, how to create strong passwords and the importance of not sharing passwords, or why we should keep operating systems updated and use anti-virus software to protect data and systems. Students could also discuss physical measures that can be used to protect data including biometric scanners, locked doors, and physical backups. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)
Standard Identifier: 3-5.NI.6
Grade Range:
3–5
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Create patterns to protect information from unauthorized access.
Descriptive Statement:
Encryption is the process of converting information or data into a code, especially to prevent unauthorized access. At this level, students use patterns as a code for encryption, to protect information. Patterns should be decodable to the party for whom the message is intended, but difficult or impossible for those with unauthorized access. For example, students could create encrypted messages via flashing a flashlight in Morse code. Other students could decode this established language even if it wasn't meant for them. To model the idea of protecting data, students should create their own variations on or changes to Morse code. This ensures that when a member of that group flashes a message only other members of their group can decode it, even if other students in the room can see it. (CA NGSS: 4-PS4-3) Alternatively, students could engage in a CS Unplugged activity that models public key encryption: One student puts a paper containing a written secret in a box, locks it with a padlock, and hands the box to a second student. Student 2 puts on a second padlock and hands it back. Student 1 removes her lock and hands the box to student 2 again. Student 2 removes his lock, opens the box, and has access to the secret that student 1 sent him. Because the box always contained at least one lock while in transit, an outside party never had the opportunity to see the message and it is protected.
Create patterns to protect information from unauthorized access.
Descriptive Statement:
Encryption is the process of converting information or data into a code, especially to prevent unauthorized access. At this level, students use patterns as a code for encryption, to protect information. Patterns should be decodable to the party for whom the message is intended, but difficult or impossible for those with unauthorized access. For example, students could create encrypted messages via flashing a flashlight in Morse code. Other students could decode this established language even if it wasn't meant for them. To model the idea of protecting data, students should create their own variations on or changes to Morse code. This ensures that when a member of that group flashes a message only other members of their group can decode it, even if other students in the room can see it. (CA NGSS: 4-PS4-3) Alternatively, students could engage in a CS Unplugged activity that models public key encryption: One student puts a paper containing a written secret in a box, locks it with a padlock, and hands the box to a second student. Student 2 puts on a second padlock and hands it back. Student 1 removes her lock and hands the box to student 2 again. Student 2 removes his lock, opens the box, and has access to the secret that student 1 sent him. Because the box always contained at least one lock while in transit, an outside party never had the opportunity to see the message and it is protected.
Standard Identifier: 6-8.AP.11
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Variables
Practice(s):
Creating Computational Artifacts (5.1, 5.2)
Standard:
Create clearly named variables that store data, and perform operations on their contents.
Descriptive Statement:
A variable is a container for data, and the name used for accessing the variable is called the identifier. Students declare, initialize, and update variables for storing different types of program data (e.g., text, integers) using names and naming conventions (e.g. camel case) that clearly convey the purpose of the variable, facilitate debugging, and improve readability. For example, students could program a quiz game with a score variable (e.g. quizScore) that is initially set to zero and increases by increments of one each time the user answers a quiz question correctly and decreases by increments of one each time a user answers a quiz question incorrectly, resulting in a score that is either a positive or negative integer. (CA CCSS for Mathematics 6.NS.5) Alternatively, students could write a program that prompts the user for their name, stores the user's response in a variable (e.g. userName), and uses this variable to greet the user by name.
Create clearly named variables that store data, and perform operations on their contents.
Descriptive Statement:
A variable is a container for data, and the name used for accessing the variable is called the identifier. Students declare, initialize, and update variables for storing different types of program data (e.g., text, integers) using names and naming conventions (e.g. camel case) that clearly convey the purpose of the variable, facilitate debugging, and improve readability. For example, students could program a quiz game with a score variable (e.g. quizScore) that is initially set to zero and increases by increments of one each time the user answers a quiz question correctly and decreases by increments of one each time a user answers a quiz question incorrectly, resulting in a score that is either a positive or negative integer. (CA CCSS for Mathematics 6.NS.5) Alternatively, students could write a program that prompts the user for their name, stores the user's response in a variable (e.g. userName), and uses this variable to greet the user by name.
Standard Identifier: 6-8.AP.12
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Control
Practice(s):
Creating Computational Artifacts (5.1, 5.2)
Standard:
Design and iteratively develop programs that combine control structures and use compound conditions.
Descriptive Statement:
Control structures can be combined in many ways. Nested loops are loops placed within loops, and nested conditionals allow the result of one conditional to lead to another. Compound conditions combine two or more conditions in a logical relationship (e.g., using AND, OR, and NOT). Students appropriately use control structures to perform repetitive and selection tasks. For example, when programming an interactive story, students could use a compound conditional within a loop to unlock a door only if a character has a key AND is touching the door. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3) Alternatively, students could use compound conditionals when writing a program to test whether two points lie along the line defined by a particular linear function. (CA CCSS for Mathematics 8.EE.7) Additionally, students could use nested loops to program a character to do the "chicken dance" by opening and closing the beak, flapping the wings, shaking the hips, and clapping four times each; this dance "chorus" is then repeated several times in its entirety.
Design and iteratively develop programs that combine control structures and use compound conditions.
Descriptive Statement:
Control structures can be combined in many ways. Nested loops are loops placed within loops, and nested conditionals allow the result of one conditional to lead to another. Compound conditions combine two or more conditions in a logical relationship (e.g., using AND, OR, and NOT). Students appropriately use control structures to perform repetitive and selection tasks. For example, when programming an interactive story, students could use a compound conditional within a loop to unlock a door only if a character has a key AND is touching the door. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3) Alternatively, students could use compound conditionals when writing a program to test whether two points lie along the line defined by a particular linear function. (CA CCSS for Mathematics 8.EE.7) Additionally, students could use nested loops to program a character to do the "chicken dance" by opening and closing the beak, flapping the wings, shaking the hips, and clapping four times each; this dance "chorus" is then repeated several times in its entirety.
Standard Identifier: 6-8.CS.2
Grade Range:
6–8
Concept:
Computing Systems
Subconcept:
Hardware & Software
Practice(s):
Creating Computational Artifacts (5.1)
Standard:
Design a project that combines hardware and software components to collect and exchange data.
Descriptive Statement:
Collecting and exchanging data involves input, output, storage, and processing. When possible, students select the components for their project designs by considering tradeoffs between factors such as functionality, cost, size, speed, accessibility, and aesthetics. Students do not need to implement their project design in order to meet this standard. For example, students could design a mobile tour app that displays information relevant to specific locations when the device is nearby or when the user selects a virtual stop on the tour. They select appropriate components, such as GPS or cellular-based geolocation tools, textual input, and speech recognition, to use in their project design. Alternatively, students could design a project that uses a sensor to collect the salinity, moisture, and temperature of soil. They may select a sensor that connects wirelessly through a Bluetooth connection because it supports greater mobility, or they could instead select a physical USB connection that does not require a separate power source. (CA NGSS: MS-ETS1-1, MS-ETS1-2)
Design a project that combines hardware and software components to collect and exchange data.
Descriptive Statement:
Collecting and exchanging data involves input, output, storage, and processing. When possible, students select the components for their project designs by considering tradeoffs between factors such as functionality, cost, size, speed, accessibility, and aesthetics. Students do not need to implement their project design in order to meet this standard. For example, students could design a mobile tour app that displays information relevant to specific locations when the device is nearby or when the user selects a virtual stop on the tour. They select appropriate components, such as GPS or cellular-based geolocation tools, textual input, and speech recognition, to use in their project design. Alternatively, students could design a project that uses a sensor to collect the salinity, moisture, and temperature of soil. They may select a sensor that connects wirelessly through a Bluetooth connection because it supports greater mobility, or they could instead select a physical USB connection that does not require a separate power source. (CA NGSS: MS-ETS1-1, MS-ETS1-2)
Standard Identifier: 6-8.CS.3
Grade Range:
6–8
Concept:
Computing Systems
Subconcept:
Troubleshooting
Practice(s):
Testing and Refining Computational Artifacts (6.2)
Standard:
Systematically apply troubleshooting strategies to identify and resolve hardware and software problems in computing systems.
Descriptive Statement:
When problems occur within computing systems, it is important to take a structured, step-by-step approach to effectively solve the problem and ensure that potential solutions are not overlooked. Examples of troubleshooting strategies include following a troubleshooting flow diagram, making changes to software to see if hardware will work, checking connections and settings, and swapping in working components. Since a computing device may interact with interconnected devices within a system, problems may not be due to the specific computing device itself but to devices connected to it. For example, students could work through a checklist of solutions for connectivity problems in a lab of computers connected wirelessly or through physical cables. They could also search for technical information online and engage in technical reading to create troubleshooting documents that they then apply. (CA CCSS for ELA/Literacy RST.6-8.10) Alternatively, students could explore and utilize operating system tools to reset a computer's default language to English. Additionally, students could swap out an externally-controlled sensor giving fluctuating readings with a new sensor to check whether there is a hardware problem.
Systematically apply troubleshooting strategies to identify and resolve hardware and software problems in computing systems.
Descriptive Statement:
When problems occur within computing systems, it is important to take a structured, step-by-step approach to effectively solve the problem and ensure that potential solutions are not overlooked. Examples of troubleshooting strategies include following a troubleshooting flow diagram, making changes to software to see if hardware will work, checking connections and settings, and swapping in working components. Since a computing device may interact with interconnected devices within a system, problems may not be due to the specific computing device itself but to devices connected to it. For example, students could work through a checklist of solutions for connectivity problems in a lab of computers connected wirelessly or through physical cables. They could also search for technical information online and engage in technical reading to create troubleshooting documents that they then apply. (CA CCSS for ELA/Literacy RST.6-8.10) Alternatively, students could explore and utilize operating system tools to reset a computer's default language to English. Additionally, students could swap out an externally-controlled sensor giving fluctuating readings with a new sensor to check whether there is a hardware problem.
Standard Identifier: 6-8.NI.5
Grade Range:
6–8
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Recognizing and Defining Computational Problems (3.1, 3.3)
Standard:
Explain potential security threats and security measures to mitigate threats.
Descriptive Statement:
Cybersecurity is an important field of study and it is valuable for students to understand the need for protecting sensitive data. Students identify multiple methods for protecting data and articulate the value and appropriateness for each method. Students are not expected to implement or explain the implementation of such technologies. For example, students could explain the importance of keeping passwords hidden, setting secure router administrator passwords, erasing a storage device before it is reused, and using firewalls to restrict access to private networks. Alternatively, students could explain the importance of two-factor authentication and HTTPS connections to ensure secure data transmission.
Explain potential security threats and security measures to mitigate threats.
Descriptive Statement:
Cybersecurity is an important field of study and it is valuable for students to understand the need for protecting sensitive data. Students identify multiple methods for protecting data and articulate the value and appropriateness for each method. Students are not expected to implement or explain the implementation of such technologies. For example, students could explain the importance of keeping passwords hidden, setting secure router administrator passwords, erasing a storage device before it is reused, and using firewalls to restrict access to private networks. Alternatively, students could explain the importance of two-factor authentication and HTTPS connections to ensure secure data transmission.
Standard Identifier: 6-8.NI.6
Grade Range:
6–8
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Apply multiple methods of information protection to model the secure transmission of information.
Descriptive Statement:
Digital information is protected using a variety of cryptographic techniques. Cryptography is essential to many models of cybersecurity. At its core, cryptography has a mathematical foundation. Cryptographic encryption can be as simple as letter substitution or as complicated as modern methods used to secure networks and the Internet. Students encode and decode messages using encryption methods, and explore different levels of complexity used to hide or secure information. For example, students could identify methods of secret communication used during the Revolutionary War (e.g., ciphers, secret codes, invisible ink, hidden letters) and then secure their own methods such as substitution ciphers or steganography (i.e., hiding messages inside a picture or other data) to compose a message from either the Continental Army or British Army. (HSS.8.1) Alternatively, students could explore functions and inverse functions for encryption and decryption and consider functions that are complex enough to keep data secure from their peers. (CA CCSS for Mathematics 8.F.1)
Apply multiple methods of information protection to model the secure transmission of information.
Descriptive Statement:
Digital information is protected using a variety of cryptographic techniques. Cryptography is essential to many models of cybersecurity. At its core, cryptography has a mathematical foundation. Cryptographic encryption can be as simple as letter substitution or as complicated as modern methods used to secure networks and the Internet. Students encode and decode messages using encryption methods, and explore different levels of complexity used to hide or secure information. For example, students could identify methods of secret communication used during the Revolutionary War (e.g., ciphers, secret codes, invisible ink, hidden letters) and then secure their own methods such as substitution ciphers or steganography (i.e., hiding messages inside a picture or other data) to compose a message from either the Continental Army or British Army. (HSS.8.1) Alternatively, students could explore functions and inverse functions for encryption and decryption and consider functions that are complex enough to keep data secure from their peers. (CA CCSS for Mathematics 8.F.1)
Standard Identifier: 9-12.AP.13
Grade Range:
9–12
Concept:
Algorithms & Programming
Subconcept:
Variables
Practice(s):
Developing and Using Abstractions (4.1)
Standard:
Create more generalized computational solutions using collections instead of repeatedly using simple variables.
Descriptive Statement:
Computers can automate repetitive tasks with algorithms that use collections to simplify and generalize computational problems. Students identify common features in multiple segments of code and substitute a single segment that uses collections (i.e., arrays, sets, lists) to account for the differences. For example, students could take a program that inputs students' scores into multiple variables and modify it to read these scores into a single array of scores. Alternatively, instead of writing one procedure to find averages of student scores and another to find averages of student absences, students could write a single general average procedure to support both tasks.
Create more generalized computational solutions using collections instead of repeatedly using simple variables.
Descriptive Statement:
Computers can automate repetitive tasks with algorithms that use collections to simplify and generalize computational problems. Students identify common features in multiple segments of code and substitute a single segment that uses collections (i.e., arrays, sets, lists) to account for the differences. For example, students could take a program that inputs students' scores into multiple variables and modify it to read these scores into a single array of scores. Alternatively, instead of writing one procedure to find averages of student scores and another to find averages of student absences, students could write a single general average procedure to support both tasks.
Standard Identifier: 9-12.AP.14
Grade Range:
9–12
Concept:
Algorithms & Programming
Subconcept:
Control
Practice(s):
Creating Computational Artifacts (5.2)
Standard:
Justify the selection of specific control structures by identifying tradeoffs associated with implementation, readability, and performance.
Descriptive Statement:
The selection of control structures in a given programming language impacts readability and performance. Readability refers to how clear the program is to other programmers and can be improved through documentation. Control structures at this level may include, for example, conditional statements, loops, event handlers, and recursion. Students justify control structure selection and tradeoffs in the process of creating their own computational artifacts. The discussion of performance is limited to a theoretical understanding of execution time and storage requirements; a quantitative analysis is not expected. For example, students could compare the readability and program performance of iterative and recursive implementations of procedures that calculate the Fibonacci sequence. Alternatively, students could compare the readability and performance tradeoffs of multiple if statements versus a nested if statement.
Justify the selection of specific control structures by identifying tradeoffs associated with implementation, readability, and performance.
Descriptive Statement:
The selection of control structures in a given programming language impacts readability and performance. Readability refers to how clear the program is to other programmers and can be improved through documentation. Control structures at this level may include, for example, conditional statements, loops, event handlers, and recursion. Students justify control structure selection and tradeoffs in the process of creating their own computational artifacts. The discussion of performance is limited to a theoretical understanding of execution time and storage requirements; a quantitative analysis is not expected. For example, students could compare the readability and program performance of iterative and recursive implementations of procedures that calculate the Fibonacci sequence. Alternatively, students could compare the readability and performance tradeoffs of multiple if statements versus a nested if statement.
Showing 11 - 20 of 30 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881