Mathematics Standards
Remove this criterion from the search
Congruence
Remove this criterion from the search
Interpreting Functions
Remove this criterion from the search
Measurement and Data
Remove this criterion from the search
Modeling with Geometry
Remove this criterion from the search
Number and Operations—Fractions
Remove this criterion from the search
Seeing Structure in Expressions
Results
Showing 141 - 150 of 174 Standards
Standard Identifier: G-CO.7
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
Standard Identifier: G-CO.8
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Standard Identifier: G-CO.9
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Standard Identifier: G-CO.9
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Standard Identifier: G-MG.1
Grade Range:
8–12
Domain:
Modeling with Geometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Apply geometric concepts in modeling situations.
Standard:
Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). *
Apply geometric concepts in modeling situations.
Standard:
Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). *
Standard Identifier: G-MG.2
Grade Range:
8–12
Domain:
Modeling with Geometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Apply geometric concepts in modeling situations.
Standard:
Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). *
Apply geometric concepts in modeling situations.
Standard:
Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). *
Standard Identifier: G-MG.3
Grade Range:
8–12
Domain:
Modeling with Geometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Apply geometric concepts in modeling situations.
Standard:
Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). *
Apply geometric concepts in modeling situations.
Standard:
Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). *
Standard Identifier: A-SSE.1.a
Grade Range:
9–12
Domain:
Seeing Structure in Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Interpret the structure of expressions. [Polynomial and rational]
Standard:
Interpret expressions that represent a quantity in terms of its context. * Interpret parts of an expression, such as terms, factors, and coefficients. *
Interpret the structure of expressions. [Polynomial and rational]
Standard:
Interpret expressions that represent a quantity in terms of its context. * Interpret parts of an expression, such as terms, factors, and coefficients. *
Standard Identifier: A-SSE.1.a
Grade Range:
9–12
Domain:
Seeing Structure in Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Interpret the structure of expressions. [Polynomial and rational]
Standard:
Interpret expressions that represent a quantity in terms of its context. * Interpret parts of an expression, such as terms, factors, and coefficients. *
Interpret the structure of expressions. [Polynomial and rational]
Standard:
Interpret expressions that represent a quantity in terms of its context. * Interpret parts of an expression, such as terms, factors, and coefficients. *
Standard Identifier: A-SSE.1.b
Grade Range:
9–12
Domain:
Seeing Structure in Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Interpret the structure of expressions. [Polynomial and rational]
Standard:
Interpret expressions that represent a quantity in terms of its context. * Interpret complicated expressions by viewing one or more of their parts as a single entity. *
Interpret the structure of expressions. [Polynomial and rational]
Standard:
Interpret expressions that represent a quantity in terms of its context. * Interpret complicated expressions by viewing one or more of their parts as a single entity. *
Showing 141 - 150 of 174 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881