Computer Science Standards
Remove this criterion from the search
Control
Remove this criterion from the search
Cybersecurity
Remove this criterion from the search
Devices
Remove this criterion from the search
Hardware & Software
Remove this criterion from the search
Network Communication & Organization
Remove this criterion from the search
Safety, Law, & Ethics
Remove this criterion from the search
Storage
Remove this criterion from the search
Troubleshooting
Remove this criterion from the search
Variables
Remove this criterion from the search
Add a Practice
Remove this criterion from the search
Recognizing and Defining Computational Problems
Remove this criterion from the search
Developing and Using Abstractions
Remove this criterion from the search
Creating Computational Artifacts
Remove this criterion from the search
Testing and Refining Computational Artifacts
Results
Showing 1 - 10 of 16 Standards
Standard Identifier: K-2.CS.3
Grade Range:
K–2
Concept:
Computing Systems
Subconcept:
Troubleshooting
Practice(s):
Testing and Refining Computational Artifacts, Communicating About Computing (6.2, 7.2)
Standard:
Describe basic hardware and software problems using accurate terminology.
Descriptive Statement:
Problems with computing systems have different causes. Accurate description of the problem aids users in finding solutions. Students communicate a problem with accurate terminology (e.g., when an app or program is not working as expected, a device will not turn on, the sound does not work, etc.). Students at this level do not need to understand the causes of hardware and software problems. For example, students could sort hardware and software terms on a word wall, and refer to the word wall when describing problems using "I see..." statements (e.g., "I see the pointer on the screen is missing", "I see that the computer will not turn on"). (CA CCSS for ELA/Literacy L.K.5.A, L.1.5.A, SL K.5, SL1.5, SL 2.5) (Visual Arts Kinder 5.2) Alternatively, students could use appropriate terminology during collaborative conversations as they learn to debug, troubleshoot, collaborate, and think critically with technology. (CA CCSS for ELA/Literacy SL.K.1, SL.1.1, SL.2.1)
Describe basic hardware and software problems using accurate terminology.
Descriptive Statement:
Problems with computing systems have different causes. Accurate description of the problem aids users in finding solutions. Students communicate a problem with accurate terminology (e.g., when an app or program is not working as expected, a device will not turn on, the sound does not work, etc.). Students at this level do not need to understand the causes of hardware and software problems. For example, students could sort hardware and software terms on a word wall, and refer to the word wall when describing problems using "I see..." statements (e.g., "I see the pointer on the screen is missing", "I see that the computer will not turn on"). (CA CCSS for ELA/Literacy L.K.5.A, L.1.5.A, SL K.5, SL1.5, SL 2.5) (Visual Arts Kinder 5.2) Alternatively, students could use appropriate terminology during collaborative conversations as they learn to debug, troubleshoot, collaborate, and think critically with technology. (CA CCSS for ELA/Literacy SL.K.1, SL.1.1, SL.2.1)
Standard Identifier: K-2.DA.7
Grade Range:
K–2
Concept:
Data & Analysis
Subconcept:
Storage
Practice(s):
Developing and Using Abstractions (4.2)
Standard:
Store, copy, search, retrieve, modify, and delete information using a computing device, and define the information stored as data.
Descriptive Statement:
Information from the real world can be stored and processed by a computing device. When stored on a computing device, it is referred to as data. Data can include images, text documents, audio files, and video files. Students store, copy, search, retrieve, modify, and delete information using a computing device and define the information stored as data. For example, students could produce a story using a computing device, storing it locally or remotely (e.g., in the cloud). They could then make a copy of the story for peer revision and editing. When the final copy of the story is complete, students delete any unnecessary files. They search for and retrieve data from a local or remote source, depending on where it was stored. (CA CCSS for ELA/Literacy W.K.6, W.K.5, W1.6, W.1.5, W.2.6, W.2.5) Alternatively, students could record their voices singing an age-appropriate song. They could store the data on a computing device, search for peers' audio files, retrieve their own files, and delete unnecesary takes. (VAPA Music K.2.2, 1.2.2, 2.2.2)
Store, copy, search, retrieve, modify, and delete information using a computing device, and define the information stored as data.
Descriptive Statement:
Information from the real world can be stored and processed by a computing device. When stored on a computing device, it is referred to as data. Data can include images, text documents, audio files, and video files. Students store, copy, search, retrieve, modify, and delete information using a computing device and define the information stored as data. For example, students could produce a story using a computing device, storing it locally or remotely (e.g., in the cloud). They could then make a copy of the story for peer revision and editing. When the final copy of the story is complete, students delete any unnecessary files. They search for and retrieve data from a local or remote source, depending on where it was stored. (CA CCSS for ELA/Literacy W.K.6, W.K.5, W1.6, W.1.5, W.2.6, W.2.5) Alternatively, students could record their voices singing an age-appropriate song. They could store the data on a computing device, search for peers' audio files, retrieve their own files, and delete unnecesary takes. (VAPA Music K.2.2, 1.2.2, 2.2.2)
Standard Identifier: K-2.IC.20
Grade Range:
K–2
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Describe approaches and rationales for keeping login information private, and for logging off of devices appropriately.
Descriptive Statement:
People use computing technology in ways that can help or hurt themselves and/or others. Harmful behaviors, such as sharing passwords or other private information and leaving public devices logged in should be recognized and avoided. Students keep login information private, log off of devices appropriately, and discuss the importance of these practices. For example, while learning about individual responsibility and citizenship, students could create a "privacy folder" to store login information, and keep this folder in a secure location that is not easily seen and accessed by classmates. Students could discuss the relative benefits and impacts of choosing to store passwords in a folder online versus on paper. They could also describe how using the same login and password across many systems and apps could lead to significant security issues and requires even more vigilance in maintaining security. (HSS K.1) Alternatively, students can write an informational piece regarding the importance of keeping login information private and logging off of public devices. (CA CCSS for ELA/Literacy W.K.2, W.1.2, W.2.2)
Describe approaches and rationales for keeping login information private, and for logging off of devices appropriately.
Descriptive Statement:
People use computing technology in ways that can help or hurt themselves and/or others. Harmful behaviors, such as sharing passwords or other private information and leaving public devices logged in should be recognized and avoided. Students keep login information private, log off of devices appropriately, and discuss the importance of these practices. For example, while learning about individual responsibility and citizenship, students could create a "privacy folder" to store login information, and keep this folder in a secure location that is not easily seen and accessed by classmates. Students could discuss the relative benefits and impacts of choosing to store passwords in a folder online versus on paper. They could also describe how using the same login and password across many systems and apps could lead to significant security issues and requires even more vigilance in maintaining security. (HSS K.1) Alternatively, students can write an informational piece regarding the importance of keeping login information private and logging off of public devices. (CA CCSS for ELA/Literacy W.K.2, W.1.2, W.2.2)
Standard Identifier: 3-5.CS.2
Grade Range:
3–5
Concept:
Computing Systems
Subconcept:
Hardware & Software
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Demonstrate how computer hardware and software work together as a system to accomplish tasks.
Descriptive Statement:
Hardware and software are both needed to accomplish tasks with a computing device. Students create a model to illustrate ways in which hardware and software work as a system. Students could draw a model on paper or in a drawing program, program an animation to demonstrate it, or demonstrate it by acting this out in some way. At this level, a model should only include the basic elements of a computer system, such as input, output, processor, sensors, and storage. For example, students could create a diagram or flow chart to indicate how a keyboard, desktop computer, monitor, and word processing software interact with each other. The keyboard (hardware) detects a key press, which the operating system and word processing application (software) displays as a new character that has been inserted into the document and is visible through the monitor (hardware). Students could also create a model by acting out the interactions of these different hardware and software components. Alternatively, when describing that animals and people receive different types of information through their senses, process the information in their brain, and respond to the information in different ways, students could compare this to the interaction of how the information traveling through a computer from mouse to processor are similar to signals sent through the nervous system telling our brain about the world around us to prompt responses. (CA NGSS: 4-LS1-2)
Demonstrate how computer hardware and software work together as a system to accomplish tasks.
Descriptive Statement:
Hardware and software are both needed to accomplish tasks with a computing device. Students create a model to illustrate ways in which hardware and software work as a system. Students could draw a model on paper or in a drawing program, program an animation to demonstrate it, or demonstrate it by acting this out in some way. At this level, a model should only include the basic elements of a computer system, such as input, output, processor, sensors, and storage. For example, students could create a diagram or flow chart to indicate how a keyboard, desktop computer, monitor, and word processing software interact with each other. The keyboard (hardware) detects a key press, which the operating system and word processing application (software) displays as a new character that has been inserted into the document and is visible through the monitor (hardware). Students could also create a model by acting out the interactions of these different hardware and software components. Alternatively, when describing that animals and people receive different types of information through their senses, process the information in their brain, and respond to the information in different ways, students could compare this to the interaction of how the information traveling through a computer from mouse to processor are similar to signals sent through the nervous system telling our brain about the world around us to prompt responses. (CA NGSS: 4-LS1-2)
Standard Identifier: 3-5.CS.3
Grade Range:
3–5
Concept:
Computing Systems
Subconcept:
Troubleshooting
Practice(s):
Testing and Refining Computational Artifacts (6.2)
Standard:
Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies.
Descriptive Statement:
Although computing systems vary, common troubleshooting strategies can be used across many different systems. Students use troubleshooting strategies to identify problems that could include a device not responding, lacking power, lacking a network connection, an app crashing, not playing sounds, or password entry not working. Students use and develop various solutions to address these problems. Solutions may include rebooting the device, checking for power, checking network availability, opening and closing an app, making sure speakers are turned on or headphones are plugged in, and making sure that the caps lock key is not on. For example, students could prepare for and participate in a collaborative discussion in which they identify and list computing system problems and then describe common successful fixes. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could write informative/explanatory texts, create a poster, or use another medium of communication to examine common troubleshooting strategies and convey these ideas and information clearly. (CA CCSS for ELA/Literacy W.3.2, W.4.2, W.5.2)
Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies.
Descriptive Statement:
Although computing systems vary, common troubleshooting strategies can be used across many different systems. Students use troubleshooting strategies to identify problems that could include a device not responding, lacking power, lacking a network connection, an app crashing, not playing sounds, or password entry not working. Students use and develop various solutions to address these problems. Solutions may include rebooting the device, checking for power, checking network availability, opening and closing an app, making sure speakers are turned on or headphones are plugged in, and making sure that the caps lock key is not on. For example, students could prepare for and participate in a collaborative discussion in which they identify and list computing system problems and then describe common successful fixes. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could write informative/explanatory texts, create a poster, or use another medium of communication to examine common troubleshooting strategies and convey these ideas and information clearly. (CA CCSS for ELA/Literacy W.3.2, W.4.2, W.5.2)
Standard Identifier: 3-5.DA.7
Grade Range:
3–5
Concept:
Data & Analysis
Subconcept:
Storage
Practice(s):
Developing and Using Abstractions (4.2)
Standard:
Explain that the amount of space required to store data differs based on the type of data and/or level of detail.
Descriptive Statement:
All saved data requires space to store it, whether locally or not (e.g., on the cloud). Music, images, video, and text require different amounts of storage. Video will often require more storage and different format than music or images alone because video combines both. The level of detail represented by that data also affects storage requirements. For instance, two pictures of the same object can require different amounts of storage based upon their resolution, and a high-resolution photo could require more storage than a low-resolution video. Students select appropriate storage for their data. For example, students could create an image using a standard drawing app. They could save the image in different formats (e.g., .png, .jpg, .pdf) and compare file sizes. They should also notice that different file sizes can result in differences in quality or resolution (e.g., some pictures could be more pixelated while some could be sharper). Alternatively, in an unplugged activity, students could represent images by coloring in squares within a large grid. They could model how a larger grid requires more storage but also represents a clearer image (i.e., higher resolution).
Explain that the amount of space required to store data differs based on the type of data and/or level of detail.
Descriptive Statement:
All saved data requires space to store it, whether locally or not (e.g., on the cloud). Music, images, video, and text require different amounts of storage. Video will often require more storage and different format than music or images alone because video combines both. The level of detail represented by that data also affects storage requirements. For instance, two pictures of the same object can require different amounts of storage based upon their resolution, and a high-resolution photo could require more storage than a low-resolution video. Students select appropriate storage for their data. For example, students could create an image using a standard drawing app. They could save the image in different formats (e.g., .png, .jpg, .pdf) and compare file sizes. They should also notice that different file sizes can result in differences in quality or resolution (e.g., some pictures could be more pixelated while some could be sharper). Alternatively, in an unplugged activity, students could represent images by coloring in squares within a large grid. They could model how a larger grid requires more storage but also represents a clearer image (i.e., higher resolution).
Standard Identifier: 6-8.CS.1
Grade Range:
6–8
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Fostering an Inclusive Computing Culture, Recognizing and Defining Computational Problems (1.2, 3.3)
Standard:
Design modifications to computing devices in order to improve the ways users interact with the devices.
Descriptive Statement:
Computing devices can extend the abilities of humans, but design considerations are critical to make these devices useful. Students suggest modifications to the design of computing devices and describe how these modifications would improve usabilty. For example, students could create a design for the screen layout of a smartphone that is more usable by people with vision impairments or hand tremors. They might also design how to use the device as a scanner to convert text to speech. Alternatively, students could design modifications for a student ID card reader to increase usability by planning for scanner height, need of scanner device to be connected physically to the computer, robustness of scanner housing, and choice of use of RFID or line of sight scanners. (CA NGSS: MS-ETS1-1)
Design modifications to computing devices in order to improve the ways users interact with the devices.
Descriptive Statement:
Computing devices can extend the abilities of humans, but design considerations are critical to make these devices useful. Students suggest modifications to the design of computing devices and describe how these modifications would improve usabilty. For example, students could create a design for the screen layout of a smartphone that is more usable by people with vision impairments or hand tremors. They might also design how to use the device as a scanner to convert text to speech. Alternatively, students could design modifications for a student ID card reader to increase usability by planning for scanner height, need of scanner device to be connected physically to the computer, robustness of scanner housing, and choice of use of RFID or line of sight scanners. (CA NGSS: MS-ETS1-1)
Standard Identifier: 6-8.CS.2
Grade Range:
6–8
Concept:
Computing Systems
Subconcept:
Hardware & Software
Practice(s):
Creating Computational Artifacts (5.1)
Standard:
Design a project that combines hardware and software components to collect and exchange data.
Descriptive Statement:
Collecting and exchanging data involves input, output, storage, and processing. When possible, students select the components for their project designs by considering tradeoffs between factors such as functionality, cost, size, speed, accessibility, and aesthetics. Students do not need to implement their project design in order to meet this standard. For example, students could design a mobile tour app that displays information relevant to specific locations when the device is nearby or when the user selects a virtual stop on the tour. They select appropriate components, such as GPS or cellular-based geolocation tools, textual input, and speech recognition, to use in their project design. Alternatively, students could design a project that uses a sensor to collect the salinity, moisture, and temperature of soil. They may select a sensor that connects wirelessly through a Bluetooth connection because it supports greater mobility, or they could instead select a physical USB connection that does not require a separate power source. (CA NGSS: MS-ETS1-1, MS-ETS1-2)
Design a project that combines hardware and software components to collect and exchange data.
Descriptive Statement:
Collecting and exchanging data involves input, output, storage, and processing. When possible, students select the components for their project designs by considering tradeoffs between factors such as functionality, cost, size, speed, accessibility, and aesthetics. Students do not need to implement their project design in order to meet this standard. For example, students could design a mobile tour app that displays information relevant to specific locations when the device is nearby or when the user selects a virtual stop on the tour. They select appropriate components, such as GPS or cellular-based geolocation tools, textual input, and speech recognition, to use in their project design. Alternatively, students could design a project that uses a sensor to collect the salinity, moisture, and temperature of soil. They may select a sensor that connects wirelessly through a Bluetooth connection because it supports greater mobility, or they could instead select a physical USB connection that does not require a separate power source. (CA NGSS: MS-ETS1-1, MS-ETS1-2)
Standard Identifier: 6-8.CS.3
Grade Range:
6–8
Concept:
Computing Systems
Subconcept:
Troubleshooting
Practice(s):
Testing and Refining Computational Artifacts (6.2)
Standard:
Systematically apply troubleshooting strategies to identify and resolve hardware and software problems in computing systems.
Descriptive Statement:
When problems occur within computing systems, it is important to take a structured, step-by-step approach to effectively solve the problem and ensure that potential solutions are not overlooked. Examples of troubleshooting strategies include following a troubleshooting flow diagram, making changes to software to see if hardware will work, checking connections and settings, and swapping in working components. Since a computing device may interact with interconnected devices within a system, problems may not be due to the specific computing device itself but to devices connected to it. For example, students could work through a checklist of solutions for connectivity problems in a lab of computers connected wirelessly or through physical cables. They could also search for technical information online and engage in technical reading to create troubleshooting documents that they then apply. (CA CCSS for ELA/Literacy RST.6-8.10) Alternatively, students could explore and utilize operating system tools to reset a computer's default language to English. Additionally, students could swap out an externally-controlled sensor giving fluctuating readings with a new sensor to check whether there is a hardware problem.
Systematically apply troubleshooting strategies to identify and resolve hardware and software problems in computing systems.
Descriptive Statement:
When problems occur within computing systems, it is important to take a structured, step-by-step approach to effectively solve the problem and ensure that potential solutions are not overlooked. Examples of troubleshooting strategies include following a troubleshooting flow diagram, making changes to software to see if hardware will work, checking connections and settings, and swapping in working components. Since a computing device may interact with interconnected devices within a system, problems may not be due to the specific computing device itself but to devices connected to it. For example, students could work through a checklist of solutions for connectivity problems in a lab of computers connected wirelessly or through physical cables. They could also search for technical information online and engage in technical reading to create troubleshooting documents that they then apply. (CA CCSS for ELA/Literacy RST.6-8.10) Alternatively, students could explore and utilize operating system tools to reset a computer's default language to English. Additionally, students could swap out an externally-controlled sensor giving fluctuating readings with a new sensor to check whether there is a hardware problem.
Standard Identifier: 6-8.DA.7
Grade Range:
6–8
Concept:
Data & Analysis
Subconcept:
Storage
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Represent data in multiple ways.
Descriptive Statement:
Computers store data as sequences of 0s and 1s (bits). Software translates to and from this low-level representation to higher levels that are understandable by people. Furthermore, higher level data can be represented in multiple ways, such as the digital display of a color and its corresponding numeric RGB value, or a bar graph, a pie chart, and table representation of the same data in a spreadsheet. For example, students could use a color picker to explore the correspondence between the digital display or name of a color (high-level representations) and its RGB value or hex code (low-level representation). Alternatively, students could translate a word (high-level representation) into Morse code or its corresponding sequence of ASCII codes (low-level representation).
Represent data in multiple ways.
Descriptive Statement:
Computers store data as sequences of 0s and 1s (bits). Software translates to and from this low-level representation to higher levels that are understandable by people. Furthermore, higher level data can be represented in multiple ways, such as the digital display of a color and its corresponding numeric RGB value, or a bar graph, a pie chart, and table representation of the same data in a spreadsheet. For example, students could use a color picker to explore the correspondence between the digital display or name of a color (high-level representations) and its RGB value or hex code (low-level representation). Alternatively, students could translate a word (high-level representation) into Morse code or its corresponding sequence of ASCII codes (low-level representation).
Showing 1 - 10 of 16 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881