Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 1 - 10 of 56 Standards

Standard Identifier: K-2.AP.10

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.2, 4.4)

Standard:
Model daily processes by creating and following algorithms to complete tasks.

Descriptive Statement:
Algorithms are sequences of instructions that describe how to complete a specific task. Students create algorithms that reflect simple life tasks inside and outside of the classroom. For example, students could create algorithms to represent daily routines for getting ready for school, transitioning through center rotations, eating lunch, and putting away art materials. Students could then write a narrative sequence of events. (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3) Alternatively, students could create a game or a dance with a specific set of movements to reach an intentional goal or objective. (P.E K.2, 1.2, 2.2) Additionally, students could create a map of their neighborhood and give step-by-step directions of how they get to school. (HSS.K.4, 1.2, 2.2)

Standard Identifier: K-2.AP.14

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Creating Computational Artifacts, Communicating About Computing (5.1, 7.2)

Standard:
Develop plans that describe a program’s sequence of events, goals, and expected outcomes.

Descriptive Statement:
Creating a plan for what a program will do clarifies the steps that will be needed to create the program and can be used to check if a program runs as expected. Students create a planning document to illustrate their program's sequence of events, goals, and expected outcomes of what their program will do. Planning documents could include a story map, a storyboard, or a sequential graphic organizer, to illustrate their program's sequence of events, goals, and expected outcomes of what their program will do. Students at this level may complete the planning process with help from the teacher. For example, students could create a storyboard or timeline that represents a family's history, leading to their current location of residence. Students could then create a plan for a program that animates the story of family locations. (HSS 2.1.1) (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3)

Standard Identifier: K-2.AP.15

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Communicating About Computing (7.3)

Standard:
Give attribution when using the ideas and creations of others while developing programs.

Descriptive Statement:
Computing makes it easy to reuse and remix others' creations, and this comes with a level of responsibility. Students credit artifacts that were created by others, such as pictures, music, and code. Credit could be given orally if presenting their work to the class, or in writing if sharing work on a class blog or website. Proper attribution at this stage does not require formal citation, such as in a bibliography or works cited document. For example, when creating an animation of the sun, moon, and stars using a blocks-based language, students could draw their own sun and use an image of the moon and stars from a website or a teammate. When students present the model to the class, they can orally give credit to the website or peer for the contributions. (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5) (NGSS.1-ESS1-1) (CA Model School Library Standards 2.3.b, 2.4.2.a)

Standard Identifier: K-2.AP.17

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Communicating About Computing (7.2)

Standard:
Describe the steps taken and choices made during the iterative process of program development.

Descriptive Statement:
Program developers make choices and iterate to continually refine their product. At this stage, students explain or write about the goals and expected outcomes of the programs they create and the choices that they made when creating programs. Students could use coding journals, discussions with a teacher, class presentations, or blogs. For example, students could use a combination of images, verbal reflections, a physical model, and/or written text to show the step-by-step process taken to develop a program such as cutting and pasting coding commands into a journal, using manipulatives that represent different commands and control structures, and taking screenshots of code and adding to a digital journal. This iterative process could be documented via a speech, journal, one on one conference with teacher or peer, small group conference, or blog. (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5) (CA NGSS: K-2-ETS1.2)

Standard Identifier: K-2.CS.2

Grade Range: K–2
Concept: Computing Systems
Subconcept: Hardware & Software
Practice(s): Communicating About Computing (7.2)

Standard:
Explain the functions of common hardware and software components of computing systems.

Descriptive Statement:
A computing system is composed of hardware and software. Hardware includes the physical components of a computer system. Software provides instructions for the system. These instructions are represented in a form that a computer can understand and are designed for specific purposes. Students identify and describe the function of hardware, such as desktop computers, laptop computers, tablet devices, monitors, keyboards, mice, trackpads, microphones, and printers. Students also identify and describe common software applications such as web browsers, games, and word processors. For example, students could create drawings of a computing system and label its major components with appropriate terminology. Students could then explain the function of each component. (VAPA Visual Arts 2 5.0) (CA CCSS for ELA/Literacy SL.K.5, SL.K.6, SL.1.5, SL.1.6, SL.2.5, SL.2.6) Alternatively, students could each be assigned a component of a computing system and arrange their bodies to represent the system. Students could then describe how their assigned component functions within the system. (P.E.K.1, 1.1)

Standard Identifier: K-2.DA.7

Grade Range: K–2
Concept: Data & Analysis
Subconcept: Storage
Practice(s): Developing and Using Abstractions (4.2)

Standard:
Store, copy, search, retrieve, modify, and delete information using a computing device, and define the information stored as data.

Descriptive Statement:
Information from the real world can be stored and processed by a computing device. When stored on a computing device, it is referred to as data. Data can include images, text documents, audio files, and video files. Students store, copy, search, retrieve, modify, and delete information using a computing device and define the information stored as data. For example, students could produce a story using a computing device, storing it locally or remotely (e.g., in the cloud). They could then make a copy of the story for peer revision and editing. When the final copy of the story is complete, students delete any unnecessary files. They search for and retrieve data from a local or remote source, depending on where it was stored. (CA CCSS for ELA/Literacy W.K.6, W.K.5, W1.6, W.1.5, W.2.6, W.2.5) Alternatively, students could record their voices singing an age-appropriate song. They could store the data on a computing device, search for peers' audio files, retrieve their own files, and delete unnecesary takes. (VAPA Music K.2.2, 1.2.2, 2.2.2)

Standard Identifier: K-2.DA.8

Grade Range: K–2
Concept: Data & Analysis
Subconcept: Collection, Visualization, & Transformation
Practice(s): Developing and Using Abstractions, Communicating About Computing (4.4, 7.1)

Standard:
Collect and present data in various visual formats.

Descriptive Statement:
Data can be collected and presented in various visual formats. For example, students could measure temperature changes throughout a day. They could then discuss ways to display the data visually. Students could extend the activity by writing different narratives based on collected data, such as a story that begins in the morning when temperatures are low and one that begins in the afternoon when the sun is high and temperatures are higher. (CA CCSS for ELA/Literacy RL.K.9, RL.1.9, RL.2.9, W.K.3, W.1.3, W.2.3). Alternatively, students collect peers' favorite flavor of ice cream and brainstorm differing ways to display the data. In groups, students can choose to display and present the data in a format of their choice. (CA CCSS for Mathematics K.MD.3, 1.MD.4, 2.MD.10)

Standard Identifier: K-2.NI.4

Grade Range: K–2
Concept: Networks & the Internet
Subconcept: Network Communication & Organization
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Model and describe how people connect to other people, places, information and ideas through a network.

Descriptive Statement:
Information is passed between multiple points (nodes) on a network. The Internet is a network that enables people to connect with other people worldwide through many different points of connection. Students model ways that people communicate, find information, or acquire ideas through a network. Students use a network, such as the internet, to access information from multiple locations or devices. For example, students could utilize a cloud-based platform to access shared documents or note-taking applications for group research projects, and then create a model (e.g., flowchart) to illustrate how this network aids collaboration. (CA CCSS for ELA/Literacy W.K.7, W.1.7, W.2.7) Alternatively, students could design devices that use light or sound to aid communication across distances (e.g., light source to send signals, paper cup and string “telephones,” and a pattern of drum beats) and then describe how networks build connections. (CA NGSS: 1-PS4-4)

Standard Identifier: K-2.NI.5

Grade Range: K–2
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Communicating About Computing (7.2)

Standard:
Explain why people use passwords.

Descriptive Statement:
Passwords protect information from unwanted use by others. When creating passwords, people often use patterns of familiar numbers and text to more easily remember their passwords. However, this may make the passwords weaker. Knowledge about the importance of passwords is an essential first step in learning about cybersecurity. Students explain that strong passwords are needed to protect devices and information from unwanted use. For example, students could play a game of guessing a three-character code. In one version of the game, the characters are only numbers. In the second version, characters are numbers or letters. Students describe why it would take longer to guess the correct code in the second case. Alternatively, students could engage in a collaborative discussion regarding passwords and their importance. Students may follow-up the discussion by exploring strong password components (combination of letters, numbers, and characters), creating their own passwords, and writing opinion pieces indicating reasons their passwords are strong. (CA CCSS for ELA/Literacy SL.K.1, SL.1.1, SL 2.1, W.1.1, W.2.1)

Standard Identifier: K-2.NI.6

Grade Range: K–2
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Create patterns to communicate a message.

Descriptive Statement:
Connecting devices to a network or the Internet provides great benefit, but care must be taken to protect devices and information from unauthorized access. Messages can be protected by using secret languages or codes. Patterns help to ensure that the intended recipient can decode the message. Students create a pattern that can be decoded and translated into a message. For example, students could use a table to associate each text character with a number. Then, they could select a combination of text characters and use mathematical functions (e.g., simple arithmetic operations) to transform the numbers associated with the characters into a secret message. Using inverse functions, a peer could translate the secret message back into its original form. (CA CCSS for Mathematics 2.OA.A.1, 2.OA.B.2) Alternatively, students could use icons or invented symbols to represent patterns of beat, rhythm, or pitch to decode a musical phrase. (VAPA Music K.1.1, 1.1.1, 2.1.1, 2.2.2)

Showing 1 - 10 of 56 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881