Computer Science Standards
Remove this criterion from the search
Collection, Visualization, & Transformation
Remove this criterion from the search
Devices
Remove this criterion from the search
Hardware & Software
Remove this criterion from the search
Inference & Models
Remove this criterion from the search
Network Communication & Organization
Remove this criterion from the search
Safety, Law, & Ethics
Remove this criterion from the search
Variables
Results
Showing 1 - 10 of 12 Standards
Standard Identifier: K-2.CS.1
Grade Range:
K–2
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Fostering an Inclusive Computing Culture (1.1)
Standard:
Select and operate computing devices that perform a variety of tasks accurately and quickly based on user needs and preferences.
Descriptive Statement:
People use computing devices to perform a variety of tasks accurately and quickly. Computing devices interpret and follow the given instructions literally. Students select and operate an appropriate computing device and corresponding program or app for a given task. For example, students could use computing devices to describe what plants and animals (including humans) need to survive. In this case, students could choose to use a keyboard to type explanatory sentences onto graphics. They could also choose to use a touchscreen device with a stylus to annotate an image for a slideshow, or choose to use a camera enabled device to make a video. Student choices may reflect their own needs or the needs of others. (CA NGSS: K-LS1-1; 2-LS4-1) Alternatively, students could choose to use a computing device with audio recording capabilities to recount stories or poems. Students could clarify thoughts, ideas, or feelings via their preference of either using a device with digital drawing tools, or by creating paper and pencil drawing based on their needs and preferences. (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5)
Select and operate computing devices that perform a variety of tasks accurately and quickly based on user needs and preferences.
Descriptive Statement:
People use computing devices to perform a variety of tasks accurately and quickly. Computing devices interpret and follow the given instructions literally. Students select and operate an appropriate computing device and corresponding program or app for a given task. For example, students could use computing devices to describe what plants and animals (including humans) need to survive. In this case, students could choose to use a keyboard to type explanatory sentences onto graphics. They could also choose to use a touchscreen device with a stylus to annotate an image for a slideshow, or choose to use a camera enabled device to make a video. Student choices may reflect their own needs or the needs of others. (CA NGSS: K-LS1-1; 2-LS4-1) Alternatively, students could choose to use a computing device with audio recording capabilities to recount stories or poems. Students could clarify thoughts, ideas, or feelings via their preference of either using a device with digital drawing tools, or by creating paper and pencil drawing based on their needs and preferences. (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5)
Standard Identifier: K-2.DA.8
Grade Range:
K–2
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Developing and Using Abstractions, Communicating About Computing (4.4, 7.1)
Standard:
Collect and present data in various visual formats.
Descriptive Statement:
Data can be collected and presented in various visual formats. For example, students could measure temperature changes throughout a day. They could then discuss ways to display the data visually. Students could extend the activity by writing different narratives based on collected data, such as a story that begins in the morning when temperatures are low and one that begins in the afternoon when the sun is high and temperatures are higher. (CA CCSS for ELA/Literacy RL.K.9, RL.1.9, RL.2.9, W.K.3, W.1.3, W.2.3). Alternatively, students collect peers' favorite flavor of ice cream and brainstorm differing ways to display the data. In groups, students can choose to display and present the data in a format of their choice. (CA CCSS for Mathematics K.MD.3, 1.MD.4, 2.MD.10)
Collect and present data in various visual formats.
Descriptive Statement:
Data can be collected and presented in various visual formats. For example, students could measure temperature changes throughout a day. They could then discuss ways to display the data visually. Students could extend the activity by writing different narratives based on collected data, such as a story that begins in the morning when temperatures are low and one that begins in the afternoon when the sun is high and temperatures are higher. (CA CCSS for ELA/Literacy RL.K.9, RL.1.9, RL.2.9, W.K.3, W.1.3, W.2.3). Alternatively, students collect peers' favorite flavor of ice cream and brainstorm differing ways to display the data. In groups, students can choose to display and present the data in a format of their choice. (CA CCSS for Mathematics K.MD.3, 1.MD.4, 2.MD.10)
Standard Identifier: K-2.DA.9
Grade Range:
K–2
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Developing and Using Abstractions (4.1)
Standard:
Identify and describe patterns in data visualizations, such as charts or graphs, to make predictions.
Descriptive Statement:
Data can be used to make inferences or predictions about the world. For example, students could record the number of each color of candy in a small packet. Then, they compare their individual data with classmates. Students could use the collected data to predict how many of each colored candy will be in a full size bag of like candy. (CA CCSS for Mathematics K.MD.3, 1.MD.4, 2.MD.10) Alternatively, students could sort and classify objects according to their properties and note observations. Students could then create a graph or chart of their observations and look for connections/relationships (e.g., items that are hard are usually also smooth, or items that are fluffy are usually also light in weight.) Students then look at pictures of additional objects and make predictions regarding the properties of the objects pictured. (CA NGSS: 2-PS1-1, 2-PS1-2)
Identify and describe patterns in data visualizations, such as charts or graphs, to make predictions.
Descriptive Statement:
Data can be used to make inferences or predictions about the world. For example, students could record the number of each color of candy in a small packet. Then, they compare their individual data with classmates. Students could use the collected data to predict how many of each colored candy will be in a full size bag of like candy. (CA CCSS for Mathematics K.MD.3, 1.MD.4, 2.MD.10) Alternatively, students could sort and classify objects according to their properties and note observations. Students could then create a graph or chart of their observations and look for connections/relationships (e.g., items that are hard are usually also smooth, or items that are fluffy are usually also light in weight.) Students then look at pictures of additional objects and make predictions regarding the properties of the objects pictured. (CA NGSS: 2-PS1-1, 2-PS1-2)
Standard Identifier: 3-5.CS.2
Grade Range:
3–5
Concept:
Computing Systems
Subconcept:
Hardware & Software
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Demonstrate how computer hardware and software work together as a system to accomplish tasks.
Descriptive Statement:
Hardware and software are both needed to accomplish tasks with a computing device. Students create a model to illustrate ways in which hardware and software work as a system. Students could draw a model on paper or in a drawing program, program an animation to demonstrate it, or demonstrate it by acting this out in some way. At this level, a model should only include the basic elements of a computer system, such as input, output, processor, sensors, and storage. For example, students could create a diagram or flow chart to indicate how a keyboard, desktop computer, monitor, and word processing software interact with each other. The keyboard (hardware) detects a key press, which the operating system and word processing application (software) displays as a new character that has been inserted into the document and is visible through the monitor (hardware). Students could also create a model by acting out the interactions of these different hardware and software components. Alternatively, when describing that animals and people receive different types of information through their senses, process the information in their brain, and respond to the information in different ways, students could compare this to the interaction of how the information traveling through a computer from mouse to processor are similar to signals sent through the nervous system telling our brain about the world around us to prompt responses. (CA NGSS: 4-LS1-2)
Demonstrate how computer hardware and software work together as a system to accomplish tasks.
Descriptive Statement:
Hardware and software are both needed to accomplish tasks with a computing device. Students create a model to illustrate ways in which hardware and software work as a system. Students could draw a model on paper or in a drawing program, program an animation to demonstrate it, or demonstrate it by acting this out in some way. At this level, a model should only include the basic elements of a computer system, such as input, output, processor, sensors, and storage. For example, students could create a diagram or flow chart to indicate how a keyboard, desktop computer, monitor, and word processing software interact with each other. The keyboard (hardware) detects a key press, which the operating system and word processing application (software) displays as a new character that has been inserted into the document and is visible through the monitor (hardware). Students could also create a model by acting out the interactions of these different hardware and software components. Alternatively, when describing that animals and people receive different types of information through their senses, process the information in their brain, and respond to the information in different ways, students could compare this to the interaction of how the information traveling through a computer from mouse to processor are similar to signals sent through the nervous system telling our brain about the world around us to prompt responses. (CA NGSS: 4-LS1-2)
Standard Identifier: 6-8.CS.1
Grade Range:
6–8
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Fostering an Inclusive Computing Culture, Recognizing and Defining Computational Problems (1.2, 3.3)
Standard:
Design modifications to computing devices in order to improve the ways users interact with the devices.
Descriptive Statement:
Computing devices can extend the abilities of humans, but design considerations are critical to make these devices useful. Students suggest modifications to the design of computing devices and describe how these modifications would improve usabilty. For example, students could create a design for the screen layout of a smartphone that is more usable by people with vision impairments or hand tremors. They might also design how to use the device as a scanner to convert text to speech. Alternatively, students could design modifications for a student ID card reader to increase usability by planning for scanner height, need of scanner device to be connected physically to the computer, robustness of scanner housing, and choice of use of RFID or line of sight scanners. (CA NGSS: MS-ETS1-1)
Design modifications to computing devices in order to improve the ways users interact with the devices.
Descriptive Statement:
Computing devices can extend the abilities of humans, but design considerations are critical to make these devices useful. Students suggest modifications to the design of computing devices and describe how these modifications would improve usabilty. For example, students could create a design for the screen layout of a smartphone that is more usable by people with vision impairments or hand tremors. They might also design how to use the device as a scanner to convert text to speech. Alternatively, students could design modifications for a student ID card reader to increase usability by planning for scanner height, need of scanner device to be connected physically to the computer, robustness of scanner housing, and choice of use of RFID or line of sight scanners. (CA NGSS: MS-ETS1-1)
Standard Identifier: 6-8.DA.9
Grade Range:
6–8
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Developing and Using Abstractions, Testing and Refining Computational Artifacts (4.4, 6.1)
Standard:
Test and analyze the effects of changing variables while using computational models.
Descriptive Statement:
Variables within a computational model may be changed, in order to alter a computer simulation or to more accurately represent how various data is related. Students interact with a given model, make changes to identified model variables, and observe and reflect upon the results. For example, students could test a program that makes a robot move on a track by making changes to variables (e.g., height and angle of track, size and mass of the robot) and discussing how these changes affect how far the robot travels. (CA NGSS: MS-PS2-2) Alternatively, students could test a game simulation and change variables (e.g., skill of simulated players, nature of opening moves) and analyze how these changes affect who wins the game. (CA NGSS: MS-ETS1-3) Additionally, students could modify a model for predicting the likely color of the next pick from a bag of colored candy and analyze the effects of changing variables representing the common color ratios in a typical bag of candy. (CA CCSS for Mathematics 7.SP.7, 8.SP.4)
Test and analyze the effects of changing variables while using computational models.
Descriptive Statement:
Variables within a computational model may be changed, in order to alter a computer simulation or to more accurately represent how various data is related. Students interact with a given model, make changes to identified model variables, and observe and reflect upon the results. For example, students could test a program that makes a robot move on a track by making changes to variables (e.g., height and angle of track, size and mass of the robot) and discussing how these changes affect how far the robot travels. (CA NGSS: MS-PS2-2) Alternatively, students could test a game simulation and change variables (e.g., skill of simulated players, nature of opening moves) and analyze how these changes affect who wins the game. (CA NGSS: MS-ETS1-3) Additionally, students could modify a model for predicting the likely color of the next pick from a bag of colored candy and analyze the effects of changing variables representing the common color ratios in a typical bag of candy. (CA CCSS for Mathematics 7.SP.7, 8.SP.4)
Standard Identifier: 9-12.CS.1
Grade Range:
9–12
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Developing and Using Abstractions (4.1)
Standard:
Describe ways in which abstractions hide the underlying implementation details of computing systems to simplify user experiences.
Descriptive Statement:
An abstraction is a representation of an idea or phenomenon that hides details irrelevant to the question at hand. Computing systems, both stand alone and embedded in products, are often integrated with other systems to simplify user experiences. For example, students could identify geolocation hardware embedded in a smartphone and describe how this simplifies the users experience since the user does not have to enter her own location on the phone. Alternatively, students might select an embedded device such as a car stereo, identify the types of data (e.g., radio station presets, volume level) and procedures (e.g., increase volume, store/recall saved station, mute) it includes, and explain how the implementation details are hidden from the user.
Describe ways in which abstractions hide the underlying implementation details of computing systems to simplify user experiences.
Descriptive Statement:
An abstraction is a representation of an idea or phenomenon that hides details irrelevant to the question at hand. Computing systems, both stand alone and embedded in products, are often integrated with other systems to simplify user experiences. For example, students could identify geolocation hardware embedded in a smartphone and describe how this simplifies the users experience since the user does not have to enter her own location on the phone. Alternatively, students might select an embedded device such as a car stereo, identify the types of data (e.g., radio station presets, volume level) and procedures (e.g., increase volume, store/recall saved station, mute) it includes, and explain how the implementation details are hidden from the user.
Standard Identifier: 9-12.CS.2
Grade Range:
9–12
Concept:
Computing Systems
Subconcept:
Hardware & Software
Practice(s):
Developing and Using Abstractions (4.1)
Standard:
Compare levels of abstraction and interactions between application software, system software, and hardware.
Descriptive Statement:
At its most basic level, a computer is composed of physical hardware on which software runs. Multiple layers of software are built upon various layers of hardware. Layers manage interactions and complexity in the computing system. System software manages a computing device's resources so that software can interact with hardware. Application software communicates with the user and the system software to accomplish its purpose. Students compare and describe how application software, system software, and hardware interact. For example, students could compare how various levels of hardware and software interact when a picture is to be taken on a smartphone. Systems software provides low-level commands to operate the camera hardware, but the application software interacts with system software at a higher level by requesting a common image file format (e.g., .png) that the system software provides.
Compare levels of abstraction and interactions between application software, system software, and hardware.
Descriptive Statement:
At its most basic level, a computer is composed of physical hardware on which software runs. Multiple layers of software are built upon various layers of hardware. Layers manage interactions and complexity in the computing system. System software manages a computing device's resources so that software can interact with hardware. Application software communicates with the user and the system software to accomplish its purpose. Students compare and describe how application software, system software, and hardware interact. For example, students could compare how various levels of hardware and software interact when a picture is to be taken on a smartphone. Systems software provides low-level commands to operate the camera hardware, but the application software interacts with system software at a higher level by requesting a common image file format (e.g., .png) that the system software provides.
Standard Identifier: 9-12.DA.11
Grade Range:
9–12
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Developing and Using Abstractions, Testing and Refining Computational Artifacts (4.4, 6.3)
Standard:
Refine computational models to better represent the relationships among different elements of data collected from a phenomenon or process.
Descriptive Statement:
Computational models are used to make predictions about processes or phenomena based on selected data and features. They allow people to investigate the relationships among different variables to understand a system. Predictions are tested to validate models. Students evaluate these models against real-world observations. For example, students could use a population model that allows them to speculate about interactions among different species, evaluate the model based on data gathered from nature, and then refine the model to reflect more complex and realistic interactions.
Refine computational models to better represent the relationships among different elements of data collected from a phenomenon or process.
Descriptive Statement:
Computational models are used to make predictions about processes or phenomena based on selected data and features. They allow people to investigate the relationships among different variables to understand a system. Predictions are tested to validate models. Students evaluate these models against real-world observations. For example, students could use a population model that allows them to speculate about interactions among different species, evaluate the model based on data gathered from nature, and then refine the model to reflect more complex and realistic interactions.
Standard Identifier: 9-12S.CS.1
Grade Range:
9–12 Specialty
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Developing and Using Abstractions, Communicating About Computing (4.4, 7.2)
Standard:
Illustrate ways computing systems implement logic through hardware components.
Descriptive Statement:
Computing systems use processors (e.g., a central processing unit or CPU) to execute program instructions. Processors are composed of components that implement the logical or computational operations required by the instructions. AND, OR, and NOT are examples of logic gates. Adders are examples of higher-leveled circuits built using low-level logic gates. Students illustrate how modern computing devices are made up of smaller and simpler components which implement the logic underlying the functionality of a computer processor. At this level, knowledge of how logic gates are constructed is not expected. For example, students could construct truth tables, draw logic circuit diagrams, or use an online logic circuit simulator. Students could explore the interaction of the CPU, RAM, and I/O by labeling a diagram of the von Neumann architecture. Alternatively, students could design higher-level circuits using low-level logic gates (e.g., adders).
Illustrate ways computing systems implement logic through hardware components.
Descriptive Statement:
Computing systems use processors (e.g., a central processing unit or CPU) to execute program instructions. Processors are composed of components that implement the logical or computational operations required by the instructions. AND, OR, and NOT are examples of logic gates. Adders are examples of higher-leveled circuits built using low-level logic gates. Students illustrate how modern computing devices are made up of smaller and simpler components which implement the logic underlying the functionality of a computer processor. At this level, knowledge of how logic gates are constructed is not expected. For example, students could construct truth tables, draw logic circuit diagrams, or use an online logic circuit simulator. Students could explore the interaction of the CPU, RAM, and I/O by labeling a diagram of the von Neumann architecture. Alternatively, students could design higher-level circuits using low-level logic gates (e.g., adders).
Showing 1 - 10 of 12 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881