Computer Science Standards
Remove this criterion from the search
Add a Subconcept
Remove this criterion from the search
Collection, Visualization, & Transformation
Remove this criterion from the search
Control
Remove this criterion from the search
Culture
Remove this criterion from the search
Network Communication & Organization
Remove this criterion from the search
Safety, Law, & Ethics
Remove this criterion from the search
Social Interactions
Remove this criterion from the search
Troubleshooting
Results
Showing 31 - 40 of 47 Standards
Standard Identifier: 9-12.IC.25
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Demonstrate ways a given algorithm applies to problems across disciplines.
Descriptive Statement:
Students identify how a given algorithm can be applied to real-world problems in different disciplines. For example, students could demonstrate how a randomization algorithm can be used to select participants for a clinical medical trial or to select a flash card to display on a vocabulary quiz. Alternatively, students could demonstrate how searching and sorting algorithms are needed to organize records in manufacturing settings, or to support doctors queries of patient records, or to help governments manage support services they provide to their citizens.
Demonstrate ways a given algorithm applies to problems across disciplines.
Descriptive Statement:
Students identify how a given algorithm can be applied to real-world problems in different disciplines. For example, students could demonstrate how a randomization algorithm can be used to select participants for a clinical medical trial or to select a flash card to display on a vocabulary quiz. Alternatively, students could demonstrate how searching and sorting algorithms are needed to organize records in manufacturing settings, or to support doctors queries of patient records, or to help governments manage support services they provide to their citizens.
Standard Identifier: 9-12.IC.26
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Communicating About Computing (7.2)
Standard:
Study, discuss, and think critically about the potential impacts and implications of emerging technologies on larger social, economic, and political structures, with evidence from credible sources.
Descriptive Statement:
For example, after studying the rise of artifical intelligence, students create a cause and effect chart to represent positive and negative impacts of this technology on society.
Study, discuss, and think critically about the potential impacts and implications of emerging technologies on larger social, economic, and political structures, with evidence from credible sources.
Descriptive Statement:
For example, after studying the rise of artifical intelligence, students create a cause and effect chart to represent positive and negative impacts of this technology on society.
Standard Identifier: 9-12.IC.27
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Social Interactions
Practice(s):
Collaborating Around Computing (2.4)
Standard:
Use collaboration tools and methods to increase connectivity with people of different cultures and careers.
Descriptive Statement:
Increased digital connectivity and communication between people across a variety of cultures and in differing professions has changed the collaborative nature of personal and professional interaction. Students identify, explain, and use appropriate collaborative tools. For example, students could compare ways that various technological collaboration tools could help a team become more cohesive and then choose one of these tools to manage their teamwork. Alternatively, students could use different collaborative tools and methods to solicit input from not only team members and classmates but also others, such as participants in online forums or local communities.
Use collaboration tools and methods to increase connectivity with people of different cultures and careers.
Descriptive Statement:
Increased digital connectivity and communication between people across a variety of cultures and in differing professions has changed the collaborative nature of personal and professional interaction. Students identify, explain, and use appropriate collaborative tools. For example, students could compare ways that various technological collaboration tools could help a team become more cohesive and then choose one of these tools to manage their teamwork. Alternatively, students could use different collaborative tools and methods to solicit input from not only team members and classmates but also others, such as participants in online forums or local communities.
Standard Identifier: 9-12.IC.28
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.3)
Standard:
Explain the beneficial and harmful effects that intellectual property laws can have on innovation.
Descriptive Statement:
Laws and ethics govern aspects of computing such as privacy, data, property, information, and identity. Students explain the beneficial and harmful effects of intellectual property laws as they relate to potential innovations and governance. For example, students could explain how patents protect inventions but may limit innovation. Alternatively, students could explain how intellectual property laws requiring that artists be paid for use of their media might limit the choice of songs developers can use in their computational artifacts.
Explain the beneficial and harmful effects that intellectual property laws can have on innovation.
Descriptive Statement:
Laws and ethics govern aspects of computing such as privacy, data, property, information, and identity. Students explain the beneficial and harmful effects of intellectual property laws as they relate to potential innovations and governance. For example, students could explain how patents protect inventions but may limit innovation. Alternatively, students could explain how intellectual property laws requiring that artists be paid for use of their media might limit the choice of songs developers can use in their computational artifacts.
Standard Identifier: 9-12.IC.29
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.2)
Standard:
Explain the privacy concerns related to the collection and generation of data through automated processes.
Descriptive Statement:
Data can be collected and aggregated across millions of people, even when they are not actively engaging with or physically near the data collection devices. Students recognize automated and non-evident collection of information and the privacy concerns they raise for individuals. For example, students could explain the impact on an individual when a social media site's security settings allows for mining of account information even when the user is not online. Alternatively, students could discuss the impact on individuals of using surveillance video in a store to track customers. Additionally, students could discuss how road traffic can be monitored to change signals in real time to improve road efficiency without drivers being aware and discuss policies for retaining data that identifies drivers' cars and their behaviors.
Explain the privacy concerns related to the collection and generation of data through automated processes.
Descriptive Statement:
Data can be collected and aggregated across millions of people, even when they are not actively engaging with or physically near the data collection devices. Students recognize automated and non-evident collection of information and the privacy concerns they raise for individuals. For example, students could explain the impact on an individual when a social media site's security settings allows for mining of account information even when the user is not online. Alternatively, students could discuss the impact on individuals of using surveillance video in a store to track customers. Additionally, students could discuss how road traffic can be monitored to change signals in real time to improve road efficiency without drivers being aware and discuss policies for retaining data that identifies drivers' cars and their behaviors.
Standard Identifier: 9-12.IC.30
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.2)
Standard:
Evaluate the social and economic implications of privacy in the context of safety, law, or ethics.
Descriptive Statement:
Laws govern many aspects of computing, such as privacy, data, property, information, and identity. International differences in laws and ethics have implications for computing. Students make and justify claims about potential and/or actual privacy implications of policies, laws, or ethics and consider the associated tradeoffs, focusing on society and the economy. For example, students could explore the case of companies tracking online shopping behaviors in order to decide which products to target to consumers. Students could evaluate the ethical and legal dilemmas of collecting such data without consumer knowledge in order to profit companies. Alternatively, students could evaluate the implications of net neutrality laws on society's access to information and on the impacts to businesses of varying sizes.
Evaluate the social and economic implications of privacy in the context of safety, law, or ethics.
Descriptive Statement:
Laws govern many aspects of computing, such as privacy, data, property, information, and identity. International differences in laws and ethics have implications for computing. Students make and justify claims about potential and/or actual privacy implications of policies, laws, or ethics and consider the associated tradeoffs, focusing on society and the economy. For example, students could explore the case of companies tracking online shopping behaviors in order to decide which products to target to consumers. Students could evaluate the ethical and legal dilemmas of collecting such data without consumer knowledge in order to profit companies. Alternatively, students could evaluate the implications of net neutrality laws on society's access to information and on the impacts to businesses of varying sizes.
Standard Identifier: 9-12.NI.4
Grade Range:
9–12
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Developing and Using Abstractions (4.1)
Standard:
Describe issues that impact network functionality.
Descriptive Statement:
Many different organizations, including educational, governmental, private businesses, and private households rely on networks to function adequately in order to engage in online commerce and activity. Quality of Service (QoS) refers to the capability of a network to provide better service to selected network traffic over various technologies from the perspective of the consumer. Students define and discuss performance measures that impact network functionality, such as latency, bandwidth, throughput, jitter, and error rate. For example, students could use online network simulators to explore how performance measures impact network functionality and describe impacts when various changes in the network occur. Alternatively, students could describe how pauses in television interviews conducted over satellite telephones are impacted by networking factors such as latency and jitter.
Describe issues that impact network functionality.
Descriptive Statement:
Many different organizations, including educational, governmental, private businesses, and private households rely on networks to function adequately in order to engage in online commerce and activity. Quality of Service (QoS) refers to the capability of a network to provide better service to selected network traffic over various technologies from the perspective of the consumer. Students define and discuss performance measures that impact network functionality, such as latency, bandwidth, throughput, jitter, and error rate. For example, students could use online network simulators to explore how performance measures impact network functionality and describe impacts when various changes in the network occur. Alternatively, students could describe how pauses in television interviews conducted over satellite telephones are impacted by networking factors such as latency and jitter.
Standard Identifier: 9-12.NI.5
Grade Range:
9–12
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Communicating About Computing (7.2)
Standard:
Describe the design characteristics of the Internet.
Descriptive Statement:
The Internet connects devices and networks all over the world. Large-scale coordination occurs among many different machines across multiple paths every time a web page is opened or an image is viewed online. Through the domain name system (DNS), devices on the Internet can look up Internet Protocol (IP) addresses, allowing end-to-end communication between devices. The design decisions that direct the coordination among systems composing the Internet also allow for scalability and reliability. Students factor historical, cultural, and economic decisions in their explanations of the Internet. For example, students could explain how hierarchy in the DNS supports scalability and reliability. Alternatively, students could describe how the redundancy of routing between two nodes on the Internet increases reliability and scales as the Internet grows.
Describe the design characteristics of the Internet.
Descriptive Statement:
The Internet connects devices and networks all over the world. Large-scale coordination occurs among many different machines across multiple paths every time a web page is opened or an image is viewed online. Through the domain name system (DNS), devices on the Internet can look up Internet Protocol (IP) addresses, allowing end-to-end communication between devices. The design decisions that direct the coordination among systems composing the Internet also allow for scalability and reliability. Students factor historical, cultural, and economic decisions in their explanations of the Internet. For example, students could explain how hierarchy in the DNS supports scalability and reliability. Alternatively, students could describe how the redundancy of routing between two nodes on the Internet increases reliability and scales as the Internet grows.
Standard Identifier: 9-12S.AP.15
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Control
Practice(s):
Recognizing and Defining Computational Problems, Communicating About Computing (3.2, 7.2)
Standard:
Demonstrate the flow of execution of a recursive algorithm.
Descriptive Statement:
Recursion is a powerful problem-solving approach where the problem solution is built on solutions of smaller instances of the same problem. A base case, which returns a result without referencing itself, must be defined, otherwise infinite recursion will occur. Students represent a sequence of calls to a recursive algorithm and show how the process resolves to a solution. For example, students could draw a diagram to illustrate flow of execution by keeping track of parameter and returned values for each recursive call. Alternatively, students could create a video showing the passing of arguments as the recursive algorithm runs.
Demonstrate the flow of execution of a recursive algorithm.
Descriptive Statement:
Recursion is a powerful problem-solving approach where the problem solution is built on solutions of smaller instances of the same problem. A base case, which returns a result without referencing itself, must be defined, otherwise infinite recursion will occur. Students represent a sequence of calls to a recursive algorithm and show how the process resolves to a solution. For example, students could draw a diagram to illustrate flow of execution by keeping track of parameter and returned values for each recursive call. Alternatively, students could create a video showing the passing of arguments as the recursive algorithm runs.
Standard Identifier: 9-12S.DA.7
Grade Range:
9–12 Specialty
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Communicating About Computing (7.1)
Standard:
Select and use data collection tools and techniques to generate data sets.
Descriptive Statement:
Data collection and organization is essential for obtaining new information insights and revealing new knowledge in our modern world. As computers are able to process larger sets of data, gathering data in an efficient and reliable matter remains important. The choice of data collection tools and quality of the data collected influences how new information, insights, and knowledge will support claims and be communicated. Students devise a reliable method to gather information, use software to extract digital data from data sets, and clean and organize the data in ways that support summaries of information obtained from the data. At this level, students may, but are not required to, create their own data collection tools. For example, students could create a computational artifact that records information from a sonic distance sensor to monitor the motion of a prototype vehicle. Alternatively, students could develop a reliable and practical way to automatically digitally record the number of animals entering a portion of a field to graze. Additionally, students could also find a web site containing data (e.g., race results for a major marathon), scrape the data from the web site using data collection tools, and format the data so it can be analyzed.
Select and use data collection tools and techniques to generate data sets.
Descriptive Statement:
Data collection and organization is essential for obtaining new information insights and revealing new knowledge in our modern world. As computers are able to process larger sets of data, gathering data in an efficient and reliable matter remains important. The choice of data collection tools and quality of the data collected influences how new information, insights, and knowledge will support claims and be communicated. Students devise a reliable method to gather information, use software to extract digital data from data sets, and clean and organize the data in ways that support summaries of information obtained from the data. At this level, students may, but are not required to, create their own data collection tools. For example, students could create a computational artifact that records information from a sonic distance sensor to monitor the motion of a prototype vehicle. Alternatively, students could develop a reliable and practical way to automatically digitally record the number of animals entering a portion of a field to graze. Additionally, students could also find a web site containing data (e.g., race results for a major marathon), scrape the data from the web site using data collection tools, and format the data so it can be analyzed.
Showing 31 - 40 of 47 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881