Computer Science Standards
Results
Showing 11 - 12 of 12 Standards
Standard Identifier: 9-12S.DA.9
Grade Range:
9–12 Specialty
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Evaluate the ability of models and simulations to test and support the refinement of hypotheses.
Descriptive Statement:
A model could be implemented as a diagram or a program that represents key properties of a physical or other system. A simulation is based on a model, and enables observation of the system as key properties change. Students explore, explain, and evaluate existing models and simulations, in order to support the refinement of hypotheses about how the systems work. At this level, the ability to accurately and completely model and simulate complex systems is not expected. For example, a computer model of ants following a path created by other ants who found food explains the trail-like travel patterns of the insect. Students could evaluate if the output of the model fits well with their hypothesis that ants navigate the world through the use of pheromones. They could explain how the computer model supports this hypothesis and how it might leave out certain aspects of ant behavior and whether these are important to understanding ant travel behavior. Alternatively, students could hypothesize how different ground characteristics (e.g., soil type, thickness of sediment above bedrock) relate to the severity of shaking at the surface during an earthquake. They could add or modify input about ground characteristics into an earthquake simulator, observe the changed simulation output, and then evaluate their hypotheses.
Evaluate the ability of models and simulations to test and support the refinement of hypotheses.
Descriptive Statement:
A model could be implemented as a diagram or a program that represents key properties of a physical or other system. A simulation is based on a model, and enables observation of the system as key properties change. Students explore, explain, and evaluate existing models and simulations, in order to support the refinement of hypotheses about how the systems work. At this level, the ability to accurately and completely model and simulate complex systems is not expected. For example, a computer model of ants following a path created by other ants who found food explains the trail-like travel patterns of the insect. Students could evaluate if the output of the model fits well with their hypothesis that ants navigate the world through the use of pheromones. They could explain how the computer model supports this hypothesis and how it might leave out certain aspects of ant behavior and whether these are important to understanding ant travel behavior. Alternatively, students could hypothesize how different ground characteristics (e.g., soil type, thickness of sediment above bedrock) relate to the severity of shaking at the surface during an earthquake. They could add or modify input about ground characteristics into an earthquake simulator, observe the changed simulation output, and then evaluate their hypotheses.
Standard Identifier: 9-12S.IC.28
Grade Range:
9–12 Specialty
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Communicating About Computing (7.2)
Standard:
Evaluate how computational innovations that have revolutionized aspects of our culture might evolve.
Descriptive Statement:
It is important to be able to evaluate current technologies and innovations and their potential for future impact on society. Students describe how a given computational innovation might change in the future and impacts these evolutions could have on society, economy, or culture. For example, students could consider ways in which computers may support education (or healthcare) in the future, or how developments in virtual reality might impact arts and entertainment. Alternatively, students could consider how autonomous vehicles will affect individuals' car ownership and car use habits as well as industries that employ human drivers (e.g., trucking, taxi service).
Evaluate how computational innovations that have revolutionized aspects of our culture might evolve.
Descriptive Statement:
It is important to be able to evaluate current technologies and innovations and their potential for future impact on society. Students describe how a given computational innovation might change in the future and impacts these evolutions could have on society, economy, or culture. For example, students could consider ways in which computers may support education (or healthcare) in the future, or how developments in virtual reality might impact arts and entertainment. Alternatively, students could consider how autonomous vehicles will affect individuals' car ownership and car use habits as well as industries that employ human drivers (e.g., trucking, taxi service).
Showing 11 - 12 of 12 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881