Computer Science Standards
Results
Showing 1 - 10 of 33 Standards
Standard Identifier: K-2.CS.3
Grade Range:
K–2
Concept:
Computing Systems
Subconcept:
Troubleshooting
Practice(s):
Testing and Refining Computational Artifacts, Communicating About Computing (6.2, 7.2)
Standard:
Describe basic hardware and software problems using accurate terminology.
Descriptive Statement:
Problems with computing systems have different causes. Accurate description of the problem aids users in finding solutions. Students communicate a problem with accurate terminology (e.g., when an app or program is not working as expected, a device will not turn on, the sound does not work, etc.). Students at this level do not need to understand the causes of hardware and software problems. For example, students could sort hardware and software terms on a word wall, and refer to the word wall when describing problems using "I see..." statements (e.g., "I see the pointer on the screen is missing", "I see that the computer will not turn on"). (CA CCSS for ELA/Literacy L.K.5.A, L.1.5.A, SL K.5, SL1.5, SL 2.5) (Visual Arts Kinder 5.2) Alternatively, students could use appropriate terminology during collaborative conversations as they learn to debug, troubleshoot, collaborate, and think critically with technology. (CA CCSS for ELA/Literacy SL.K.1, SL.1.1, SL.2.1)
Describe basic hardware and software problems using accurate terminology.
Descriptive Statement:
Problems with computing systems have different causes. Accurate description of the problem aids users in finding solutions. Students communicate a problem with accurate terminology (e.g., when an app or program is not working as expected, a device will not turn on, the sound does not work, etc.). Students at this level do not need to understand the causes of hardware and software problems. For example, students could sort hardware and software terms on a word wall, and refer to the word wall when describing problems using "I see..." statements (e.g., "I see the pointer on the screen is missing", "I see that the computer will not turn on"). (CA CCSS for ELA/Literacy L.K.5.A, L.1.5.A, SL K.5, SL1.5, SL 2.5) (Visual Arts Kinder 5.2) Alternatively, students could use appropriate terminology during collaborative conversations as they learn to debug, troubleshoot, collaborate, and think critically with technology. (CA CCSS for ELA/Literacy SL.K.1, SL.1.1, SL.2.1)
Standard Identifier: K-2.IC.18
Grade Range:
K–2
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Compare how people lived and worked before and after the adoption of new computing technologies.
Descriptive Statement:
Computing technologies have changed the way people live and work. Students describe the positive and negative impacts of these changes. For example, as a class, students could create a timeline that includes advancements in computing technologies. Each student could then choose an advancement from the timeline and make a graphic organizer noting how people's lives were different before and after its introduction into society. Student responses could include: In the past, if students wanted to read about a topic, they needed access to a library to find a book about it. Today, students can view and read information on the Internet about a topic or they can download e-books about it directly to a device. Such information may be available in more than one language and could be read to a student, allowing for great accessibility. (HSS.K.6.3) Alternatively, students could retell or dramatize stories, myths, and fairy tales from two distinct time periods before and after a particular computing technology had been introduced. For example, the setting of one story could take place before smartphones had been invented, while a second setting could take place with smartphones in use by characters in the story. Students could note the positive and negative aspects of smartphones on the daily lives of the characters in the story. (VAPA Theatre Arts K.3.1, K.3.2, 1.2.2, 2.3.2) (CA CCSS for ELA/Literacy RL.K.2, RL.K.9, RL.1., RL.1.9, RL.2.2, RL.2.9)
Compare how people lived and worked before and after the adoption of new computing technologies.
Descriptive Statement:
Computing technologies have changed the way people live and work. Students describe the positive and negative impacts of these changes. For example, as a class, students could create a timeline that includes advancements in computing technologies. Each student could then choose an advancement from the timeline and make a graphic organizer noting how people's lives were different before and after its introduction into society. Student responses could include: In the past, if students wanted to read about a topic, they needed access to a library to find a book about it. Today, students can view and read information on the Internet about a topic or they can download e-books about it directly to a device. Such information may be available in more than one language and could be read to a student, allowing for great accessibility. (HSS.K.6.3) Alternatively, students could retell or dramatize stories, myths, and fairy tales from two distinct time periods before and after a particular computing technology had been introduced. For example, the setting of one story could take place before smartphones had been invented, while a second setting could take place with smartphones in use by characters in the story. Students could note the positive and negative aspects of smartphones on the daily lives of the characters in the story. (VAPA Theatre Arts K.3.1, K.3.2, 1.2.2, 2.3.2) (CA CCSS for ELA/Literacy RL.K.2, RL.K.9, RL.1., RL.1.9, RL.2.2, RL.2.9)
Standard Identifier: K-2.NI.4
Grade Range:
K–2
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Model and describe how people connect to other people, places, information and ideas through a network.
Descriptive Statement:
Information is passed between multiple points (nodes) on a network. The Internet is a network that enables people to connect with other people worldwide through many different points of connection. Students model ways that people communicate, find information, or acquire ideas through a network. Students use a network, such as the internet, to access information from multiple locations or devices. For example, students could utilize a cloud-based platform to access shared documents or note-taking applications for group research projects, and then create a model (e.g., flowchart) to illustrate how this network aids collaboration. (CA CCSS for ELA/Literacy W.K.7, W.1.7, W.2.7) Alternatively, students could design devices that use light or sound to aid communication across distances (e.g., light source to send signals, paper cup and string “telephones,” and a pattern of drum beats) and then describe how networks build connections. (CA NGSS: 1-PS4-4)
Model and describe how people connect to other people, places, information and ideas through a network.
Descriptive Statement:
Information is passed between multiple points (nodes) on a network. The Internet is a network that enables people to connect with other people worldwide through many different points of connection. Students model ways that people communicate, find information, or acquire ideas through a network. Students use a network, such as the internet, to access information from multiple locations or devices. For example, students could utilize a cloud-based platform to access shared documents or note-taking applications for group research projects, and then create a model (e.g., flowchart) to illustrate how this network aids collaboration. (CA CCSS for ELA/Literacy W.K.7, W.1.7, W.2.7) Alternatively, students could design devices that use light or sound to aid communication across distances (e.g., light source to send signals, paper cup and string “telephones,” and a pattern of drum beats) and then describe how networks build connections. (CA NGSS: 1-PS4-4)
Standard Identifier: K-2.NI.5
Grade Range:
K–2
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Communicating About Computing (7.2)
Standard:
Explain why people use passwords.
Descriptive Statement:
Passwords protect information from unwanted use by others. When creating passwords, people often use patterns of familiar numbers and text to more easily remember their passwords. However, this may make the passwords weaker. Knowledge about the importance of passwords is an essential first step in learning about cybersecurity. Students explain that strong passwords are needed to protect devices and information from unwanted use. For example, students could play a game of guessing a three-character code. In one version of the game, the characters are only numbers. In the second version, characters are numbers or letters. Students describe why it would take longer to guess the correct code in the second case. Alternatively, students could engage in a collaborative discussion regarding passwords and their importance. Students may follow-up the discussion by exploring strong password components (combination of letters, numbers, and characters), creating their own passwords, and writing opinion pieces indicating reasons their passwords are strong. (CA CCSS for ELA/Literacy SL.K.1, SL.1.1, SL 2.1, W.1.1, W.2.1)
Explain why people use passwords.
Descriptive Statement:
Passwords protect information from unwanted use by others. When creating passwords, people often use patterns of familiar numbers and text to more easily remember their passwords. However, this may make the passwords weaker. Knowledge about the importance of passwords is an essential first step in learning about cybersecurity. Students explain that strong passwords are needed to protect devices and information from unwanted use. For example, students could play a game of guessing a three-character code. In one version of the game, the characters are only numbers. In the second version, characters are numbers or letters. Students describe why it would take longer to guess the correct code in the second case. Alternatively, students could engage in a collaborative discussion regarding passwords and their importance. Students may follow-up the discussion by exploring strong password components (combination of letters, numbers, and characters), creating their own passwords, and writing opinion pieces indicating reasons their passwords are strong. (CA CCSS for ELA/Literacy SL.K.1, SL.1.1, SL 2.1, W.1.1, W.2.1)
Standard Identifier: K-2.NI.6
Grade Range:
K–2
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Create patterns to communicate a message.
Descriptive Statement:
Connecting devices to a network or the Internet provides great benefit, but care must be taken to protect devices and information from unauthorized access. Messages can be protected by using secret languages or codes. Patterns help to ensure that the intended recipient can decode the message. Students create a pattern that can be decoded and translated into a message. For example, students could use a table to associate each text character with a number. Then, they could select a combination of text characters and use mathematical functions (e.g., simple arithmetic operations) to transform the numbers associated with the characters into a secret message. Using inverse functions, a peer could translate the secret message back into its original form. (CA CCSS for Mathematics 2.OA.A.1, 2.OA.B.2) Alternatively, students could use icons or invented symbols to represent patterns of beat, rhythm, or pitch to decode a musical phrase. (VAPA Music K.1.1, 1.1.1, 2.1.1, 2.2.2)
Create patterns to communicate a message.
Descriptive Statement:
Connecting devices to a network or the Internet provides great benefit, but care must be taken to protect devices and information from unauthorized access. Messages can be protected by using secret languages or codes. Patterns help to ensure that the intended recipient can decode the message. Students create a pattern that can be decoded and translated into a message. For example, students could use a table to associate each text character with a number. Then, they could select a combination of text characters and use mathematical functions (e.g., simple arithmetic operations) to transform the numbers associated with the characters into a secret message. Using inverse functions, a peer could translate the secret message back into its original form. (CA CCSS for Mathematics 2.OA.A.1, 2.OA.B.2) Alternatively, students could use icons or invented symbols to represent patterns of beat, rhythm, or pitch to decode a musical phrase. (VAPA Music K.1.1, 1.1.1, 2.1.1, 2.2.2)
Standard Identifier: 3-5.CS.3
Grade Range:
3–5
Concept:
Computing Systems
Subconcept:
Troubleshooting
Practice(s):
Testing and Refining Computational Artifacts (6.2)
Standard:
Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies.
Descriptive Statement:
Although computing systems vary, common troubleshooting strategies can be used across many different systems. Students use troubleshooting strategies to identify problems that could include a device not responding, lacking power, lacking a network connection, an app crashing, not playing sounds, or password entry not working. Students use and develop various solutions to address these problems. Solutions may include rebooting the device, checking for power, checking network availability, opening and closing an app, making sure speakers are turned on or headphones are plugged in, and making sure that the caps lock key is not on. For example, students could prepare for and participate in a collaborative discussion in which they identify and list computing system problems and then describe common successful fixes. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could write informative/explanatory texts, create a poster, or use another medium of communication to examine common troubleshooting strategies and convey these ideas and information clearly. (CA CCSS for ELA/Literacy W.3.2, W.4.2, W.5.2)
Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies.
Descriptive Statement:
Although computing systems vary, common troubleshooting strategies can be used across many different systems. Students use troubleshooting strategies to identify problems that could include a device not responding, lacking power, lacking a network connection, an app crashing, not playing sounds, or password entry not working. Students use and develop various solutions to address these problems. Solutions may include rebooting the device, checking for power, checking network availability, opening and closing an app, making sure speakers are turned on or headphones are plugged in, and making sure that the caps lock key is not on. For example, students could prepare for and participate in a collaborative discussion in which they identify and list computing system problems and then describe common successful fixes. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could write informative/explanatory texts, create a poster, or use another medium of communication to examine common troubleshooting strategies and convey these ideas and information clearly. (CA CCSS for ELA/Literacy W.3.2, W.4.2, W.5.2)
Standard Identifier: 3-5.IC.20
Grade Range:
3–5
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Discuss computing technologies that have changed the world, and express how those technologies influence, and are influenced by, cultural practices.
Descriptive Statement:
New computing technologies are created and existing technologies are modified for many reasons, including to increase their benefits, decrease their risks, and meet societal needs. Students, with guidance from their teacher, discuss topics that relate to the history of computing technologies and changes in the world due to these technologies. Topics could be based on current news content, such as robotics, wireless Internet, mobile computing devices, GPS systems, wearable computing, and how social media has influenced social and political changes. For example, students could conduct research in computing technologies that impact daily life such as self-driving cars. They engage in a collaborative discussion describing impacts of these advancements (e.g., self-driving cars could reduce crashes and decrease traffic, but there is a cost barrier to purchasing them). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7, SL.3.1, SL.4.1, SL.5.1) Alternatively, students could discuss how technological advancements affected the entertainment industry and then compare and contrast the impacts on audiences. For instance, people with access to high-speed Internet may be able to choose to utilize streaming media (which may cost less than traditional media options), but those in rural areas may not have the same access and be able to reap those benefits. (VAPA Theatre Arts 4.3.2, 4.4.2)
Discuss computing technologies that have changed the world, and express how those technologies influence, and are influenced by, cultural practices.
Descriptive Statement:
New computing technologies are created and existing technologies are modified for many reasons, including to increase their benefits, decrease their risks, and meet societal needs. Students, with guidance from their teacher, discuss topics that relate to the history of computing technologies and changes in the world due to these technologies. Topics could be based on current news content, such as robotics, wireless Internet, mobile computing devices, GPS systems, wearable computing, and how social media has influenced social and political changes. For example, students could conduct research in computing technologies that impact daily life such as self-driving cars. They engage in a collaborative discussion describing impacts of these advancements (e.g., self-driving cars could reduce crashes and decrease traffic, but there is a cost barrier to purchasing them). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7, SL.3.1, SL.4.1, SL.5.1) Alternatively, students could discuss how technological advancements affected the entertainment industry and then compare and contrast the impacts on audiences. For instance, people with access to high-speed Internet may be able to choose to utilize streaming media (which may cost less than traditional media options), but those in rural areas may not have the same access and be able to reap those benefits. (VAPA Theatre Arts 4.3.2, 4.4.2)
Standard Identifier: 3-5.IC.21
Grade Range:
3–5
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Fostering an Inclusive Computing Culture (1.2)
Standard:
Propose ways to improve the accessibility and usability of technology products for the diverse needs and wants of users.
Descriptive Statement:
The development and modification of computing technology is driven by people’s needs and wants and can affect groups differently. Students anticipate the needs and wants of diverse end users and propose ways to improve access and usability of technology, with consideration of potential perspectives of users with different backgrounds, ability levels, points of view, and disabilities. For example, students could research a wide variety of disabilities that would limit the use of traditional computational tools for the creation of multimedia artifacts, including digital images, songs, and videos. Students could then brainstorm and propose new software that would allow students that are limited by the disabilities to create similar artifacts in new ways (e.g., graphical display of music for the deaf, the sonification of images for visually impaired students, voice input for those that are unable to use traditional input like the mouse and the keyboard). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7) Alternatively, as they anticipate unique user needs, students may consider using both speech and text to convey information in a game. They may also wish to vary the types of programs they create, knowing that not everyone shares their own tastes. (CA NGSS: 3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)
Propose ways to improve the accessibility and usability of technology products for the diverse needs and wants of users.
Descriptive Statement:
The development and modification of computing technology is driven by people’s needs and wants and can affect groups differently. Students anticipate the needs and wants of diverse end users and propose ways to improve access and usability of technology, with consideration of potential perspectives of users with different backgrounds, ability levels, points of view, and disabilities. For example, students could research a wide variety of disabilities that would limit the use of traditional computational tools for the creation of multimedia artifacts, including digital images, songs, and videos. Students could then brainstorm and propose new software that would allow students that are limited by the disabilities to create similar artifacts in new ways (e.g., graphical display of music for the deaf, the sonification of images for visually impaired students, voice input for those that are unable to use traditional input like the mouse and the keyboard). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7) Alternatively, as they anticipate unique user needs, students may consider using both speech and text to convey information in a game. They may also wish to vary the types of programs they create, knowing that not everyone shares their own tastes. (CA NGSS: 3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)
Standard Identifier: 3-5.NI.4
Grade Range:
3–5
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Model how information is broken down into smaller pieces, transmitted as packets through multiple devices over networks and the Internet, and reassembled at the destination.
Descriptive Statement:
Information is sent and received over physical or wireless paths. It is broken down into smaller pieces called packets, which are sent independently and reassembled at the destination. Students demonstrate their understanding of this flow of information by, for instance, drawing a model of the way packets are transmitted, programming an animation to show how packets are transmitted, or demonstrating this through an unplugged activity in which they physically act this out. For example, students could design a structure using building blocks or other materials with the intention of re-engineering it in another location, just as early Americans did after the intercontinental railroad was constructed in the 1850s (HSS.4.4.1, 4.4.2). Students could deconstruct the designed structure, place materials into specific containers (or plastic bags/brown paper bags/etc.), and develop instructions on how to recreate the structure once each container arrives at its intended destination. (CA NGSS: 3-5-ETS1) For example, students could cut up a map of the United States by state lines. Students could then place the states in envelopes and transmit the "packets" through a physical network, represented by multiple students spreading out in arms reach of at least two others. At the destination, the student who receives the packets resassembles the individual states back into a map of the United States. (HSS 5.9) Alternatively, students could perform a similar activity with a diatonic scale, cutting the scale into individual notes. Each note, in order, should be placed into a numbered envelope based on its location on the scale. These envelopes can be transmitted across the network of students and reassembled at the destination. (VAPA Music 4.1.2)
Model how information is broken down into smaller pieces, transmitted as packets through multiple devices over networks and the Internet, and reassembled at the destination.
Descriptive Statement:
Information is sent and received over physical or wireless paths. It is broken down into smaller pieces called packets, which are sent independently and reassembled at the destination. Students demonstrate their understanding of this flow of information by, for instance, drawing a model of the way packets are transmitted, programming an animation to show how packets are transmitted, or demonstrating this through an unplugged activity in which they physically act this out. For example, students could design a structure using building blocks or other materials with the intention of re-engineering it in another location, just as early Americans did after the intercontinental railroad was constructed in the 1850s (HSS.4.4.1, 4.4.2). Students could deconstruct the designed structure, place materials into specific containers (or plastic bags/brown paper bags/etc.), and develop instructions on how to recreate the structure once each container arrives at its intended destination. (CA NGSS: 3-5-ETS1) For example, students could cut up a map of the United States by state lines. Students could then place the states in envelopes and transmit the "packets" through a physical network, represented by multiple students spreading out in arms reach of at least two others. At the destination, the student who receives the packets resassembles the individual states back into a map of the United States. (HSS 5.9) Alternatively, students could perform a similar activity with a diatonic scale, cutting the scale into individual notes. Each note, in order, should be placed into a numbered envelope based on its location on the scale. These envelopes can be transmitted across the network of students and reassembled at the destination. (VAPA Music 4.1.2)
Standard Identifier: 3-5.NI.5
Grade Range:
3–5
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Describe physical and digital security measures for protecting personal information.
Descriptive Statement:
Personal information can be protected physically and digitally. Cybersecurity is the protection from unauthorized use of electronic data, or the measures taken to achieve this. Students identify what personal information is and the reasons for protecting it. Students describe physical and digital approaches for protecting personal information such as using strong passwords and biometric scanners. For example, students could engage in a collaborative discussion orally or in writing regarding topics that relate to personal cybersecurity issues. Discussion topics could be based on current events related to cybersecurity or topics that are applicable to students, such as the necessity of backing up data to guard against loss, how to create strong passwords and the importance of not sharing passwords, or why we should keep operating systems updated and use anti-virus software to protect data and systems. Students could also discuss physical measures that can be used to protect data including biometric scanners, locked doors, and physical backups. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)
Describe physical and digital security measures for protecting personal information.
Descriptive Statement:
Personal information can be protected physically and digitally. Cybersecurity is the protection from unauthorized use of electronic data, or the measures taken to achieve this. Students identify what personal information is and the reasons for protecting it. Students describe physical and digital approaches for protecting personal information such as using strong passwords and biometric scanners. For example, students could engage in a collaborative discussion orally or in writing regarding topics that relate to personal cybersecurity issues. Discussion topics could be based on current events related to cybersecurity or topics that are applicable to students, such as the necessity of backing up data to guard against loss, how to create strong passwords and the importance of not sharing passwords, or why we should keep operating systems updated and use anti-virus software to protect data and systems. Students could also discuss physical measures that can be used to protect data including biometric scanners, locked doors, and physical backups. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)
Showing 1 - 10 of 33 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881