Computer Science Standards
Results
Showing 1 - 10 of 13 Standards
Standard Identifier: K-2.AP.10
Grade Range:
K–2
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.2, 4.4)
Standard:
Model daily processes by creating and following algorithms to complete tasks.
Descriptive Statement:
Algorithms are sequences of instructions that describe how to complete a specific task. Students create algorithms that reflect simple life tasks inside and outside of the classroom. For example, students could create algorithms to represent daily routines for getting ready for school, transitioning through center rotations, eating lunch, and putting away art materials. Students could then write a narrative sequence of events. (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3) Alternatively, students could create a game or a dance with a specific set of movements to reach an intentional goal or objective. (P.E K.2, 1.2, 2.2) Additionally, students could create a map of their neighborhood and give step-by-step directions of how they get to school. (HSS.K.4, 1.2, 2.2)
Model daily processes by creating and following algorithms to complete tasks.
Descriptive Statement:
Algorithms are sequences of instructions that describe how to complete a specific task. Students create algorithms that reflect simple life tasks inside and outside of the classroom. For example, students could create algorithms to represent daily routines for getting ready for school, transitioning through center rotations, eating lunch, and putting away art materials. Students could then write a narrative sequence of events. (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3) Alternatively, students could create a game or a dance with a specific set of movements to reach an intentional goal or objective. (P.E K.2, 1.2, 2.2) Additionally, students could create a map of their neighborhood and give step-by-step directions of how they get to school. (HSS.K.4, 1.2, 2.2)
Standard Identifier: K-2.DA.7
Grade Range:
K–2
Concept:
Data & Analysis
Subconcept:
Storage
Practice(s):
Developing and Using Abstractions (4.2)
Standard:
Store, copy, search, retrieve, modify, and delete information using a computing device, and define the information stored as data.
Descriptive Statement:
Information from the real world can be stored and processed by a computing device. When stored on a computing device, it is referred to as data. Data can include images, text documents, audio files, and video files. Students store, copy, search, retrieve, modify, and delete information using a computing device and define the information stored as data. For example, students could produce a story using a computing device, storing it locally or remotely (e.g., in the cloud). They could then make a copy of the story for peer revision and editing. When the final copy of the story is complete, students delete any unnecessary files. They search for and retrieve data from a local or remote source, depending on where it was stored. (CA CCSS for ELA/Literacy W.K.6, W.K.5, W1.6, W.1.5, W.2.6, W.2.5) Alternatively, students could record their voices singing an age-appropriate song. They could store the data on a computing device, search for peers' audio files, retrieve their own files, and delete unnecesary takes. (VAPA Music K.2.2, 1.2.2, 2.2.2)
Store, copy, search, retrieve, modify, and delete information using a computing device, and define the information stored as data.
Descriptive Statement:
Information from the real world can be stored and processed by a computing device. When stored on a computing device, it is referred to as data. Data can include images, text documents, audio files, and video files. Students store, copy, search, retrieve, modify, and delete information using a computing device and define the information stored as data. For example, students could produce a story using a computing device, storing it locally or remotely (e.g., in the cloud). They could then make a copy of the story for peer revision and editing. When the final copy of the story is complete, students delete any unnecessary files. They search for and retrieve data from a local or remote source, depending on where it was stored. (CA CCSS for ELA/Literacy W.K.6, W.K.5, W1.6, W.1.5, W.2.6, W.2.5) Alternatively, students could record their voices singing an age-appropriate song. They could store the data on a computing device, search for peers' audio files, retrieve their own files, and delete unnecesary takes. (VAPA Music K.2.2, 1.2.2, 2.2.2)
Standard Identifier: K-2.NI.4
Grade Range:
K–2
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Model and describe how people connect to other people, places, information and ideas through a network.
Descriptive Statement:
Information is passed between multiple points (nodes) on a network. The Internet is a network that enables people to connect with other people worldwide through many different points of connection. Students model ways that people communicate, find information, or acquire ideas through a network. Students use a network, such as the internet, to access information from multiple locations or devices. For example, students could utilize a cloud-based platform to access shared documents or note-taking applications for group research projects, and then create a model (e.g., flowchart) to illustrate how this network aids collaboration. (CA CCSS for ELA/Literacy W.K.7, W.1.7, W.2.7) Alternatively, students could design devices that use light or sound to aid communication across distances (e.g., light source to send signals, paper cup and string “telephones,” and a pattern of drum beats) and then describe how networks build connections. (CA NGSS: 1-PS4-4)
Model and describe how people connect to other people, places, information and ideas through a network.
Descriptive Statement:
Information is passed between multiple points (nodes) on a network. The Internet is a network that enables people to connect with other people worldwide through many different points of connection. Students model ways that people communicate, find information, or acquire ideas through a network. Students use a network, such as the internet, to access information from multiple locations or devices. For example, students could utilize a cloud-based platform to access shared documents or note-taking applications for group research projects, and then create a model (e.g., flowchart) to illustrate how this network aids collaboration. (CA CCSS for ELA/Literacy W.K.7, W.1.7, W.2.7) Alternatively, students could design devices that use light or sound to aid communication across distances (e.g., light source to send signals, paper cup and string “telephones,” and a pattern of drum beats) and then describe how networks build connections. (CA NGSS: 1-PS4-4)
Standard Identifier: 3-5.DA.7
Grade Range:
3–5
Concept:
Data & Analysis
Subconcept:
Storage
Practice(s):
Developing and Using Abstractions (4.2)
Standard:
Explain that the amount of space required to store data differs based on the type of data and/or level of detail.
Descriptive Statement:
All saved data requires space to store it, whether locally or not (e.g., on the cloud). Music, images, video, and text require different amounts of storage. Video will often require more storage and different format than music or images alone because video combines both. The level of detail represented by that data also affects storage requirements. For instance, two pictures of the same object can require different amounts of storage based upon their resolution, and a high-resolution photo could require more storage than a low-resolution video. Students select appropriate storage for their data. For example, students could create an image using a standard drawing app. They could save the image in different formats (e.g., .png, .jpg, .pdf) and compare file sizes. They should also notice that different file sizes can result in differences in quality or resolution (e.g., some pictures could be more pixelated while some could be sharper). Alternatively, in an unplugged activity, students could represent images by coloring in squares within a large grid. They could model how a larger grid requires more storage but also represents a clearer image (i.e., higher resolution).
Explain that the amount of space required to store data differs based on the type of data and/or level of detail.
Descriptive Statement:
All saved data requires space to store it, whether locally or not (e.g., on the cloud). Music, images, video, and text require different amounts of storage. Video will often require more storage and different format than music or images alone because video combines both. The level of detail represented by that data also affects storage requirements. For instance, two pictures of the same object can require different amounts of storage based upon their resolution, and a high-resolution photo could require more storage than a low-resolution video. Students select appropriate storage for their data. For example, students could create an image using a standard drawing app. They could save the image in different formats (e.g., .png, .jpg, .pdf) and compare file sizes. They should also notice that different file sizes can result in differences in quality or resolution (e.g., some pictures could be more pixelated while some could be sharper). Alternatively, in an unplugged activity, students could represent images by coloring in squares within a large grid. They could model how a larger grid requires more storage but also represents a clearer image (i.e., higher resolution).
Standard Identifier: 3-5.NI.4
Grade Range:
3–5
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Model how information is broken down into smaller pieces, transmitted as packets through multiple devices over networks and the Internet, and reassembled at the destination.
Descriptive Statement:
Information is sent and received over physical or wireless paths. It is broken down into smaller pieces called packets, which are sent independently and reassembled at the destination. Students demonstrate their understanding of this flow of information by, for instance, drawing a model of the way packets are transmitted, programming an animation to show how packets are transmitted, or demonstrating this through an unplugged activity in which they physically act this out. For example, students could design a structure using building blocks or other materials with the intention of re-engineering it in another location, just as early Americans did after the intercontinental railroad was constructed in the 1850s (HSS.4.4.1, 4.4.2). Students could deconstruct the designed structure, place materials into specific containers (or plastic bags/brown paper bags/etc.), and develop instructions on how to recreate the structure once each container arrives at its intended destination. (CA NGSS: 3-5-ETS1) For example, students could cut up a map of the United States by state lines. Students could then place the states in envelopes and transmit the "packets" through a physical network, represented by multiple students spreading out in arms reach of at least two others. At the destination, the student who receives the packets resassembles the individual states back into a map of the United States. (HSS 5.9) Alternatively, students could perform a similar activity with a diatonic scale, cutting the scale into individual notes. Each note, in order, should be placed into a numbered envelope based on its location on the scale. These envelopes can be transmitted across the network of students and reassembled at the destination. (VAPA Music 4.1.2)
Model how information is broken down into smaller pieces, transmitted as packets through multiple devices over networks and the Internet, and reassembled at the destination.
Descriptive Statement:
Information is sent and received over physical or wireless paths. It is broken down into smaller pieces called packets, which are sent independently and reassembled at the destination. Students demonstrate their understanding of this flow of information by, for instance, drawing a model of the way packets are transmitted, programming an animation to show how packets are transmitted, or demonstrating this through an unplugged activity in which they physically act this out. For example, students could design a structure using building blocks or other materials with the intention of re-engineering it in another location, just as early Americans did after the intercontinental railroad was constructed in the 1850s (HSS.4.4.1, 4.4.2). Students could deconstruct the designed structure, place materials into specific containers (or plastic bags/brown paper bags/etc.), and develop instructions on how to recreate the structure once each container arrives at its intended destination. (CA NGSS: 3-5-ETS1) For example, students could cut up a map of the United States by state lines. Students could then place the states in envelopes and transmit the "packets" through a physical network, represented by multiple students spreading out in arms reach of at least two others. At the destination, the student who receives the packets resassembles the individual states back into a map of the United States. (HSS 5.9) Alternatively, students could perform a similar activity with a diatonic scale, cutting the scale into individual notes. Each note, in order, should be placed into a numbered envelope based on its location on the scale. These envelopes can be transmitted across the network of students and reassembled at the destination. (VAPA Music 4.1.2)
Standard Identifier: 6-8.AP.10
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Developing and Using Abstractions (4.1, 4.4)
Standard:
Use flowcharts and/or pseudocode to design and illustrate algorithms that solve complex problems.
Descriptive Statement:
Complex problems are problems that would be difficult for students to solve without breaking them down into multiple steps. Flowcharts and pseudocode are used to design and illustrate the breakdown of steps in an algorithm. Students design and illustrate algorithms using pseudocode and/or flowcharts that organize and sequence the breakdown of steps for solving complex problems. For example, students might use a flowchart to illustrate an algorithm that produces a recommendation for purchasing sneakers based on inputs such as size, colors, brand, comfort, and cost. Alternatively, students could write pseudocode to express an algorithm for suggesting their outfit for the day, based on inputs such as the weather, color preferences, and day of the week.
Use flowcharts and/or pseudocode to design and illustrate algorithms that solve complex problems.
Descriptive Statement:
Complex problems are problems that would be difficult for students to solve without breaking them down into multiple steps. Flowcharts and pseudocode are used to design and illustrate the breakdown of steps in an algorithm. Students design and illustrate algorithms using pseudocode and/or flowcharts that organize and sequence the breakdown of steps for solving complex problems. For example, students might use a flowchart to illustrate an algorithm that produces a recommendation for purchasing sneakers based on inputs such as size, colors, brand, comfort, and cost. Alternatively, students could write pseudocode to express an algorithm for suggesting their outfit for the day, based on inputs such as the weather, color preferences, and day of the week.
Standard Identifier: 6-8.DA.7
Grade Range:
6–8
Concept:
Data & Analysis
Subconcept:
Storage
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Represent data in multiple ways.
Descriptive Statement:
Computers store data as sequences of 0s and 1s (bits). Software translates to and from this low-level representation to higher levels that are understandable by people. Furthermore, higher level data can be represented in multiple ways, such as the digital display of a color and its corresponding numeric RGB value, or a bar graph, a pie chart, and table representation of the same data in a spreadsheet. For example, students could use a color picker to explore the correspondence between the digital display or name of a color (high-level representations) and its RGB value or hex code (low-level representation). Alternatively, students could translate a word (high-level representation) into Morse code or its corresponding sequence of ASCII codes (low-level representation).
Represent data in multiple ways.
Descriptive Statement:
Computers store data as sequences of 0s and 1s (bits). Software translates to and from this low-level representation to higher levels that are understandable by people. Furthermore, higher level data can be represented in multiple ways, such as the digital display of a color and its corresponding numeric RGB value, or a bar graph, a pie chart, and table representation of the same data in a spreadsheet. For example, students could use a color picker to explore the correspondence between the digital display or name of a color (high-level representations) and its RGB value or hex code (low-level representation). Alternatively, students could translate a word (high-level representation) into Morse code or its corresponding sequence of ASCII codes (low-level representation).
Standard Identifier: 6-8.NI.4
Grade Range:
6–8
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Model the role of protocols in transmitting data across networks and the Internet.
Descriptive Statement:
Protocols are rules that define how messages between computers are sent. They determine how quickly and securely information is transmitted across networks, as well as how to handle errors in transmission. Students model how data is sent using protocols to choose the fastest path and to deal with missing information. Knowledge of the details of how specific protocols work is not expected. The priority at this grade level is understanding the purpose of protocols and how they enable efficient and errorless communication. For example, students could devise a plan for sending data representing a textual message and devise a plan for resending lost information. Alternatively, students could devise a plan for sending data to represent a picture, and devise a plan for interpreting the image when pieces of the data are missing. Additionally, students could model the speed of sending messages by Bluetooth, Wi-Fi, or cellular networks and describe ways errors in data transmission can be detected and dealt with.
Model the role of protocols in transmitting data across networks and the Internet.
Descriptive Statement:
Protocols are rules that define how messages between computers are sent. They determine how quickly and securely information is transmitted across networks, as well as how to handle errors in transmission. Students model how data is sent using protocols to choose the fastest path and to deal with missing information. Knowledge of the details of how specific protocols work is not expected. The priority at this grade level is understanding the purpose of protocols and how they enable efficient and errorless communication. For example, students could devise a plan for sending data representing a textual message and devise a plan for resending lost information. Alternatively, students could devise a plan for sending data to represent a picture, and devise a plan for interpreting the image when pieces of the data are missing. Additionally, students could model the speed of sending messages by Bluetooth, Wi-Fi, or cellular networks and describe ways errors in data transmission can be detected and dealt with.
Standard Identifier: 9-12.AP.12
Grade Range:
9–12
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.1)
Standard:
Design algorithms to solve computational problems using a combination of original and existing algorithms.
Descriptive Statement:
Knowledge of common algorithms improves how people develop software, secure data, and store information. Some algorithms may be easier to implement in a particular programming language, work faster, require less memory to store data, and be applicable in a wider variety of situations than other algorithms. Algorithms used to search and sort data are common in a variety of software applications. For example, students could design an algorithm to calculate and display various sports statistics and use common sorting or mathematical algorithms (e.g., average) in the design of the overall algorithm. Alternatively, students could design an algorithm to implement a game and use existing randomization algorithms to place pieces randomly in starting positions or to control the "roll" of a dice or selection of a "card" from a deck.
Design algorithms to solve computational problems using a combination of original and existing algorithms.
Descriptive Statement:
Knowledge of common algorithms improves how people develop software, secure data, and store information. Some algorithms may be easier to implement in a particular programming language, work faster, require less memory to store data, and be applicable in a wider variety of situations than other algorithms. Algorithms used to search and sort data are common in a variety of software applications. For example, students could design an algorithm to calculate and display various sports statistics and use common sorting or mathematical algorithms (e.g., average) in the design of the overall algorithm. Alternatively, students could design an algorithm to implement a game and use existing randomization algorithms to place pieces randomly in starting positions or to control the "roll" of a dice or selection of a "card" from a deck.
Standard Identifier: 9-12.DA.8
Grade Range:
9–12
Concept:
Data & Analysis
Subconcept:
Storage
Practice(s):
Developing and Using Abstractions (4.1)
Standard:
Translate between different representations of data abstractions of real-world phenomena, such as characters, numbers, and images.
Descriptive Statement:
Computers represent complex real-world concepts such as characters, numbers, and images through various abstractions. Students translate between these different levels of data representations. For example, students could convert an HTML (Hyper Text Markup Language) tag for red font into RGB (Red Green Blue), HEX (Hexadecimal Color Code), HSL (Hue Saturation Lightness), RGBA( Red Green Blue Alpha), or HSLA (Hue Saturation Lightness and Alpha) representations. Alternatively, students could convert the standard representation of a character such as ! into ASCII or Unicode.
Translate between different representations of data abstractions of real-world phenomena, such as characters, numbers, and images.
Descriptive Statement:
Computers represent complex real-world concepts such as characters, numbers, and images through various abstractions. Students translate between these different levels of data representations. For example, students could convert an HTML (Hyper Text Markup Language) tag for red font into RGB (Red Green Blue), HEX (Hexadecimal Color Code), HSL (Hue Saturation Lightness), RGBA( Red Green Blue Alpha), or HSLA (Hue Saturation Lightness and Alpha) representations. Alternatively, students could convert the standard representation of a character such as ! into ASCII or Unicode.
Showing 1 - 10 of 13 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881