Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 11 - 20 of 38 Standards

Standard Identifier: 3-5.IC.20

Grade Range: 3–5
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Recognizing and Defining Computational Problems (3.1)

Standard:
Discuss computing technologies that have changed the world, and express how those technologies influence, and are influenced by, cultural practices.

Descriptive Statement:
New computing technologies are created and existing technologies are modified for many reasons, including to increase their benefits, decrease their risks, and meet societal needs. Students, with guidance from their teacher, discuss topics that relate to the history of computing technologies and changes in the world due to these technologies. Topics could be based on current news content, such as robotics, wireless Internet, mobile computing devices, GPS systems, wearable computing, and how social media has influenced social and political changes. For example, students could conduct research in computing technologies that impact daily life such as self-driving cars. They engage in a collaborative discussion describing impacts of these advancements (e.g., self-driving cars could reduce crashes and decrease traffic, but there is a cost barrier to purchasing them). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7, SL.3.1, SL.4.1, SL.5.1) Alternatively, students could discuss how technological advancements affected the entertainment industry and then compare and contrast the impacts on audiences. For instance, people with access to high-speed Internet may be able to choose to utilize streaming media (which may cost less than traditional media options), but those in rural areas may not have the same access and be able to reap those benefits. (VAPA Theatre Arts 4.3.2, 4.4.2)

Standard Identifier: 3-5.IC.21

Grade Range: 3–5
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Fostering an Inclusive Computing Culture (1.2)

Standard:
Propose ways to improve the accessibility and usability of technology products for the diverse needs and wants of users.

Descriptive Statement:
The development and modification of computing technology is driven by people’s needs and wants and can affect groups differently. Students anticipate the needs and wants of diverse end users and propose ways to improve access and usability of technology, with consideration of potential perspectives of users with different backgrounds, ability levels, points of view, and disabilities. For example, students could research a wide variety of disabilities that would limit the use of traditional computational tools for the creation of multimedia artifacts, including digital images, songs, and videos. Students could then brainstorm and propose new software that would allow students that are limited by the disabilities to create similar artifacts in new ways (e.g., graphical display of music for the deaf, the sonification of images for visually impaired students, voice input for those that are unable to use traditional input like the mouse and the keyboard). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7) Alternatively, as they anticipate unique user needs, students may consider using both speech and text to convey information in a game. They may also wish to vary the types of programs they create, knowing that not everyone shares their own tastes. (CA NGSS: 3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)

Standard Identifier: 3-5.IC.22

Grade Range: 3–5
Concept: Impacts of Computing
Subconcept: Social Interactions
Practice(s): Fostering an Inclusive Computing Culture (1.1)

Standard:
Seek and explain the impact of diverse perspectives for the purpose of improving computational artifacts.

Descriptive Statement:
Computing technologies enable global collaboration and sharing of ideas. Students solicit feedback from a diverse group of users and creators and explain how this input improves their computational artifacts. For example, students could seek feedback from classmates via user surveys, in order to create an idea and then make a claim as to how to improve the overall structure and function of their computational artifact. Using the feedback students could write an opinion piece supporting their claim. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1) Alternatively, with guidance from their teacher, students could use video conferencing tools, shared documents, or other online collaborative spaces, such as blogs, wikis, forums, or website comments, to gather and synthesize feedback from individuals and groups about programming projects. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)

Standard Identifier: 6-8.AP.10

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Developing and Using Abstractions (4.1, 4.4)

Standard:
Use flowcharts and/or pseudocode to design and illustrate algorithms that solve complex problems.

Descriptive Statement:
Complex problems are problems that would be difficult for students to solve without breaking them down into multiple steps. Flowcharts and pseudocode are used to design and illustrate the breakdown of steps in an algorithm. Students design and illustrate algorithms using pseudocode and/or flowcharts that organize and sequence the breakdown of steps for solving complex problems. For example, students might use a flowchart to illustrate an algorithm that produces a recommendation for purchasing sneakers based on inputs such as size, colors, brand, comfort, and cost. Alternatively, students could write pseudocode to express an algorithm for suggesting their outfit for the day, based on inputs such as the weather, color preferences, and day of the week.

Standard Identifier: 6-8.CS.2

Grade Range: 6–8
Concept: Computing Systems
Subconcept: Hardware & Software
Practice(s): Creating Computational Artifacts (5.1)

Standard:
Design a project that combines hardware and software components to collect and exchange data.

Descriptive Statement:
Collecting and exchanging data involves input, output, storage, and processing. When possible, students select the components for their project designs by considering tradeoffs between factors such as functionality, cost, size, speed, accessibility, and aesthetics. Students do not need to implement their project design in order to meet this standard. For example, students could design a mobile tour app that displays information relevant to specific locations when the device is nearby or when the user selects a virtual stop on the tour. They select appropriate components, such as GPS or cellular-based geolocation tools, textual input, and speech recognition, to use in their project design. Alternatively, students could design a project that uses a sensor to collect the salinity, moisture, and temperature of soil. They may select a sensor that connects wirelessly through a Bluetooth connection because it supports greater mobility, or they could instead select a physical USB connection that does not require a separate power source. (CA NGSS: MS-ETS1-1, MS-ETS1-2)

Standard Identifier: 6-8.CS.3

Grade Range: 6–8
Concept: Computing Systems
Subconcept: Troubleshooting
Practice(s): Testing and Refining Computational Artifacts (6.2)

Standard:
Systematically apply troubleshooting strategies to identify and resolve hardware and software problems in computing systems.

Descriptive Statement:
When problems occur within computing systems, it is important to take a structured, step-by-step approach to effectively solve the problem and ensure that potential solutions are not overlooked. Examples of troubleshooting strategies include following a troubleshooting flow diagram, making changes to software to see if hardware will work, checking connections and settings, and swapping in working components. Since a computing device may interact with interconnected devices within a system, problems may not be due to the specific computing device itself but to devices connected to it. For example, students could work through a checklist of solutions for connectivity problems in a lab of computers connected wirelessly or through physical cables. They could also search for technical information online and engage in technical reading to create troubleshooting documents that they then apply. (CA CCSS for ELA/Literacy RST.6-8.10) Alternatively, students could explore and utilize operating system tools to reset a computer's default language to English. Additionally, students could swap out an externally-controlled sensor giving fluctuating readings with a new sensor to check whether there is a hardware problem.

Standard Identifier: 6-8.DA.7

Grade Range: 6–8
Concept: Data & Analysis
Subconcept: Storage
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Represent data in multiple ways.

Descriptive Statement:
Computers store data as sequences of 0s and 1s (bits). Software translates to and from this low-level representation to higher levels that are understandable by people. Furthermore, higher level data can be represented in multiple ways, such as the digital display of a color and its corresponding numeric RGB value, or a bar graph, a pie chart, and table representation of the same data in a spreadsheet. For example, students could use a color picker to explore the correspondence between the digital display or name of a color (high-level representations) and its RGB value or hex code (low-level representation). Alternatively, students could translate a word (high-level representation) into Morse code or its corresponding sequence of ASCII codes (low-level representation).

Standard Identifier: 6-8.IC.20

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Communicating About Computing (7.2)

Standard:
Compare tradeoffs associated with computing technologies that affect people's everyday activities and career options.

Descriptive Statement:
Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use computing technologies have tradeoffs. Students consider current events related to broad ideas, including privacy, communication, and automation. For example, students could compare and contrast the impacts of computing technologies with the impacts of other systems developed throughout history such as the Pony Express and US Postal System. (HSS.7.8.4) Alternatively, students could identify tradeoffs for both personal and professional uses of a variety of computing technologies. For instance, driverless cars can increase convenience and reduce accidents, but they may be susceptible to hacking. The emerging industry will reduce the number of taxi and shared-ride drivers, but may create more software engineering and cybersecurity jobs.

Standard Identifier: 6-8.IC.21

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Fostering an Inclusive Computing Culture (1.2)

Standard:
Discuss issues of bias and accessibility in the design of existing technologies.

Descriptive Statement:
Computing technologies should support users of many backgrounds and abilities. In order to maximize accessiblity, these differences need to be addressed by examining diverse populations. With the teacher's guidance, students test and discuss the usability of various technology tools, such as apps, games, and devices. For example, students could discuss the impacts of facial recognition software that works better for lighter skin tones and recognize that the software was likely developed with a homogeneous testing group. Students could then discuss how accessibility could be improved by sampling a more diverse population. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1)

Standard Identifier: 6-8.IC.22

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Social Interactions
Practice(s): Collaborating Around Computing, Creating Computational Artifacts (2.4, 5.2)

Standard:
Collaborate with many contributors when creating a computational artifact.

Descriptive Statement:
Users have diverse sets of experiences, needs, and wants. These need to be understood and integrated into the design of computational artifacts. Students use applications that enable crowdsourcing to gather services, ideas, or content from a large group of people. At this level, crowdsourcing can be done at the local level (e.g., classroom, school, or neighborhood) and/or global level (e.g., age-appropriate online communities). For example, a group of students could use electronic surveys to solicit input from their neighborhood regarding an important social or political issue. They could collaborate with a community artist to combine animations and create a digital community collage informing the public about various points of view regarding the topic. (VAPA Visual Art 8.5.2, 8.5.4)

Showing 11 - 20 of 38 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881