Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 1 - 10 of 14 Standards

Standard Identifier: K-2.CS.1

Grade Range: K–2
Concept: Computing Systems
Subconcept: Devices
Practice(s): Fostering an Inclusive Computing Culture (1.1)

Standard:
Select and operate computing devices that perform a variety of tasks accurately and quickly based on user needs and preferences.

Descriptive Statement:
People use computing devices to perform a variety of tasks accurately and quickly. Computing devices interpret and follow the given instructions literally. Students select and operate an appropriate computing device and corresponding program or app for a given task. For example, students could use computing devices to describe what plants and animals (including humans) need to survive. In this case, students could choose to use a keyboard to type explanatory sentences onto graphics. They could also choose to use a touchscreen device with a stylus to annotate an image for a slideshow, or choose to use a camera enabled device to make a video. Student choices may reflect their own needs or the needs of others. (CA NGSS: K-LS1-1; 2-LS4-1) Alternatively, students could choose to use a computing device with audio recording capabilities to recount stories or poems. Students could clarify thoughts, ideas, or feelings via their preference of either using a device with digital drawing tools, or by creating paper and pencil drawing based on their needs and preferences. (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5)

Standard Identifier: K-2.IC.19

Grade Range: K–2
Concept: Impacts of Computing
Subconcept: Social Interactions
Practice(s): Collaborating Around Computing (2.1)

Standard:
Work respectfully and responsibly with others when communicating electronically.

Descriptive Statement:
Electronic communication facilitates positive interactions, such as sharing ideas with many people, but the public and anonymous nature of electronic communication also allows intimidating and inappropriate behavior in the form of cyberbullying. Responsible electronic communication includes limiting access to personably identifiable information. Students learn and use appropriate behavior when communicating electronically (often called "netiquette"). For example, students could share their work on a classroom blog or in other collaborative spaces online, taking care to avoid sharing information that is inappropriate or that could personally identify themselves to others. (CA CCSS for ELA/Literacy W.K.6, W.1.6, W.21.6) Alternatively, students could provide feedback to others on their work in a kind and respectful manner. They could learn how written words can be easily misinterpreted and may seem negative when the intention may be to express confusion, give ideas, or prompt further discussion. They could also learn to identify harmful behavior on collaborative spaces and intervening to find the proper authority to help. (CA CCSS for ELA/Literacy W.K.5, W.1.5, W.2.5) (HSS 1.1.2)

Standard Identifier: 3-5.AP.15

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Fostering an Inclusive Computing Culture, Creating Computational Artifacts (1.1, 5.1)

Standard:
Use an iterative process to plan and develop a program by considering the perspectives and preferences of others.

Descriptive Statement:
Planning is an important part of the iterative process of program development. Students gain a basic understanding of the importance and process of planning before beginning to write code for a program. They plan the development of a program by outlining key features, time and resource constraints, and user expectations. Students should document the plan as, for example, a storyboard, flowchart, pseudocode, or story map. For example, students could collaborate with a partner to plan and develop a program that graphs a function. They could iteratively modify the program based on feedback from diverse users, such as students who are color blind and may have trouble differentiating lines on a graph based on the color. (CA CCSS for Mathematics 5.G.1, 5.G.2) Alternatively, students could plan as a team to develop a program to display experimental data. They could implement the program in stages, generating basic displays first and then soliciting feedback from others on how easy it is to interpret (e.g., are labels clear and readable?, are lines thick enough?, are titles understandable?). Students could iteratively improve their display to make it more readable and to better support the communication of the finding of the experiment. (NGSS.3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)

Standard Identifier: 3-5.AP.18

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Collaborating Around Computing (2.2)

Standard:
Perform different roles when collaborating with peers during the design, implementation, and review stages of program development.

Descriptive Statement:
Collaborative computing is the process of creating computational artifacts by working in pairs or on teams. It involves asking for the contributions and feedback of others. Effective collaboration can often lead to better outcomes than working independently. With teacher guidance, students take turns in different roles during program development, such as driver, navigator, notetaker, facilitator, and debugger, as they design and implement their program. For example, while taking on different roles during program development, students could create and maintain a journal about their experiences working collaboratively. (CA CCSS for ELA/Literacy W.3.10, W.4.10, W.5.10) (CA NGSS: 3-5-ETS1-2)

Standard Identifier: 3-5.IC.22

Grade Range: 3–5
Concept: Impacts of Computing
Subconcept: Social Interactions
Practice(s): Fostering an Inclusive Computing Culture (1.1)

Standard:
Seek and explain the impact of diverse perspectives for the purpose of improving computational artifacts.

Descriptive Statement:
Computing technologies enable global collaboration and sharing of ideas. Students solicit feedback from a diverse group of users and creators and explain how this input improves their computational artifacts. For example, students could seek feedback from classmates via user surveys, in order to create an idea and then make a claim as to how to improve the overall structure and function of their computational artifact. Using the feedback students could write an opinion piece supporting their claim. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1) Alternatively, with guidance from their teacher, students could use video conferencing tools, shared documents, or other online collaborative spaces, such as blogs, wikis, forums, or website comments, to gather and synthesize feedback from individuals and groups about programming projects. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)

Standard Identifier: 6-8.AP.15

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Fostering an Inclusive Computing Culture, Collaborating Around Computing (1.1, 2.3)

Standard:
Seek and incorporate feedback from team members and users to refine a solution that meets user needs.

Descriptive Statement:
Development teams that employ user-centered design processes create solutions (e.g., programs and devices) that can have a large societal impact (e.g., an app that allows people with speech difficulties to allow a smartphone to clarify their speech). Students begin to seek diverse perspectives throughout the design process to improve their computational artifacts. Considerations of the end-user may include usability, accessibility, age-appropriate content, respectful language, user perspective, pronoun use, or color contrast. For example, if students are designing an app to teach their classmates about recycling, they could first interview or survey their classmates to learn what their classmates already know about recycling and why they do or do not recycle. After building a prototype of the app, the students could then test the app with a sample of their classmates to see if they learned anything from the app and if they had difficulty using the app (e.g., trouble reading or understanding text). After gathering interview data, students could refine the app to meet classmate needs. (CA NGSS: MS-ETS1-4)

Standard Identifier: 6-8.AP.18

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Collaborating Around Computing, Creating Computational Artifacts (2.2, 5.1)

Standard:
Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.

Descriptive Statement:
Collaboration is a common and crucial practice in programming development. Often, many individuals and groups work on the interdependent parts of a project together. Students assume pre-defined roles within their teams and manage the project workflow using structured timelines. With teacher guidance, they begin to create collective goals, expectations, and equitable workloads. For example, students could decompose the design stage of a game into planning the storyboard, flowchart, and different parts of the game mechanics. They can then distribute tasks and roles among members of the team and assign deadlines. Alternatively, students could work as a team to develop a storyboard for an animation representing a written narrative, and then program the scenes individually. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3)

Standard Identifier: 6-8.CS.1

Grade Range: 6–8
Concept: Computing Systems
Subconcept: Devices
Practice(s): Fostering an Inclusive Computing Culture, Recognizing and Defining Computational Problems (1.2, 3.3)

Standard:
Design modifications to computing devices in order to improve the ways users interact with the devices.

Descriptive Statement:
Computing devices can extend the abilities of humans, but design considerations are critical to make these devices useful. Students suggest modifications to the design of computing devices and describe how these modifications would improve usabilty. For example, students could create a design for the screen layout of a smartphone that is more usable by people with vision impairments or hand tremors. They might also design how to use the device as a scanner to convert text to speech. Alternatively, students could design modifications for a student ID card reader to increase usability by planning for scanner height, need of scanner device to be connected physically to the computer, robustness of scanner housing, and choice of use of RFID or line of sight scanners. (CA NGSS: MS-ETS1-1)

Standard Identifier: 6-8.IC.22

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Social Interactions
Practice(s): Collaborating Around Computing, Creating Computational Artifacts (2.4, 5.2)

Standard:
Collaborate with many contributors when creating a computational artifact.

Descriptive Statement:
Users have diverse sets of experiences, needs, and wants. These need to be understood and integrated into the design of computational artifacts. Students use applications that enable crowdsourcing to gather services, ideas, or content from a large group of people. At this level, crowdsourcing can be done at the local level (e.g., classroom, school, or neighborhood) and/or global level (e.g., age-appropriate online communities). For example, a group of students could use electronic surveys to solicit input from their neighborhood regarding an important social or political issue. They could collaborate with a community artist to combine animations and create a digital community collage informing the public about various points of view regarding the topic. (VAPA Visual Art 8.5.2, 8.5.4)

Standard Identifier: 9-12.AP.18

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Fostering an Inclusive Computing Culture, Creating Computational Artifacts (1.1, 5.1)

Standard:
Systematically design programs for broad audiences by incorporating feedback from users.

Descriptive Statement:
Programmers use a systematic design and review process to meet the needs of a broad audience. The process includes planning to meet user needs, developing software for broad audiences, testing users from a cross-section of the audience, and refining designs based on feedback. For example, students could create a user satisfaction survey and brainstorm distribution methods to collect feedback about a mobile application. After collecting feedback from a diverse audience, students could incorporate feedback into their product design. Alternatively, while developing an e-textiles project with human touch sensors, students could collect data from peers and identify design changes needed to improve usability by users of different needs.

Showing 1 - 10 of 14 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881