Computer Science Standards
Results
Showing 11 - 20 of 33 Standards
Standard Identifier: 3-5.DA.8
Grade Range:
3–5
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Communicating About Computing (7.1)
Standard:
Organize and present collected data visually to highlight relationships and support a claim.
Descriptive Statement:
Raw data has little meaning on its own. Data is often sorted or grouped to provide additional clarity. Organizing data can make interpreting and communicating it to others easier. Data points can be clustered by a number of commonalities. The same data could be manipulated in different ways to emphasize particular aspects or parts of the data set. For example, students could create and administer electronic surveys to their classmates. Possible topics could include favorite books, family heritage, and after school activities. Students could then create digital displays of the data they have collected such as column histogram charts showing the percent of respondents in each grade who selected a particular favorite book. Finally, students could make quantitative statements supported by the data such as which books are more appealing to specific ages of students. As an extension, students could write an opinion piece stating a claim and supporting it with evidence from the data they collected. (CA CCSS for Mathematics 3.MD.3, 4.MD.4, 5.MD.2) (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1) Alternatively, students could represent data in tables and graphical displays to describe weather experienced in the last several years. They could select the type of graphical display based on the specific data represented (e.g., daily high/low temperatures on a scatter plot, average temperatures for a month across years in a column chart). Students could then make a claim about expected weather in future months based on the data. (CA NGSS: 3-ESS2-1)
Organize and present collected data visually to highlight relationships and support a claim.
Descriptive Statement:
Raw data has little meaning on its own. Data is often sorted or grouped to provide additional clarity. Organizing data can make interpreting and communicating it to others easier. Data points can be clustered by a number of commonalities. The same data could be manipulated in different ways to emphasize particular aspects or parts of the data set. For example, students could create and administer electronic surveys to their classmates. Possible topics could include favorite books, family heritage, and after school activities. Students could then create digital displays of the data they have collected such as column histogram charts showing the percent of respondents in each grade who selected a particular favorite book. Finally, students could make quantitative statements supported by the data such as which books are more appealing to specific ages of students. As an extension, students could write an opinion piece stating a claim and supporting it with evidence from the data they collected. (CA CCSS for Mathematics 3.MD.3, 4.MD.4, 5.MD.2) (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1) Alternatively, students could represent data in tables and graphical displays to describe weather experienced in the last several years. They could select the type of graphical display based on the specific data represented (e.g., daily high/low temperatures on a scatter plot, average temperatures for a month across years in a column chart). Students could then make a claim about expected weather in future months based on the data. (CA NGSS: 3-ESS2-1)
Standard Identifier: 6-8.AP.15
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Fostering an Inclusive Computing Culture, Collaborating Around Computing (1.1, 2.3)
Standard:
Seek and incorporate feedback from team members and users to refine a solution that meets user needs.
Descriptive Statement:
Development teams that employ user-centered design processes create solutions (e.g., programs and devices) that can have a large societal impact (e.g., an app that allows people with speech difficulties to allow a smartphone to clarify their speech). Students begin to seek diverse perspectives throughout the design process to improve their computational artifacts. Considerations of the end-user may include usability, accessibility, age-appropriate content, respectful language, user perspective, pronoun use, or color contrast. For example, if students are designing an app to teach their classmates about recycling, they could first interview or survey their classmates to learn what their classmates already know about recycling and why they do or do not recycle. After building a prototype of the app, the students could then test the app with a sample of their classmates to see if they learned anything from the app and if they had difficulty using the app (e.g., trouble reading or understanding text). After gathering interview data, students could refine the app to meet classmate needs. (CA NGSS: MS-ETS1-4)
Seek and incorporate feedback from team members and users to refine a solution that meets user needs.
Descriptive Statement:
Development teams that employ user-centered design processes create solutions (e.g., programs and devices) that can have a large societal impact (e.g., an app that allows people with speech difficulties to allow a smartphone to clarify their speech). Students begin to seek diverse perspectives throughout the design process to improve their computational artifacts. Considerations of the end-user may include usability, accessibility, age-appropriate content, respectful language, user perspective, pronoun use, or color contrast. For example, if students are designing an app to teach their classmates about recycling, they could first interview or survey their classmates to learn what their classmates already know about recycling and why they do or do not recycle. After building a prototype of the app, the students could then test the app with a sample of their classmates to see if they learned anything from the app and if they had difficulty using the app (e.g., trouble reading or understanding text). After gathering interview data, students could refine the app to meet classmate needs. (CA NGSS: MS-ETS1-4)
Standard Identifier: 6-8.AP.16
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts, Communicating About Computing (4.2, 5.2, 7.3)
Standard:
Incorporate existing code, media, and libraries into original programs, and give attribution.
Descriptive Statement:
Building on the work of others enables students to produce more interesting and powerful creations. Students use portions of code, algorithms, digital media, and/or data created by others in their own programs and websites. They give attribution to the original creators to acknowledge their contributions. For example, when creating a side-scrolling game, students may incorporate portions of code that create a realistic jump movement from another person's game, and they may also import Creative Commons-licensed images to use in the background. Alternatively, when creating a website to demonstrate their knowledge of historical figures from the Civil War, students may use a professionally-designed template and public domain images of historical figures. (HSS.8.10.5) Additionally, students could import libraries and connect to web application program interfaces (APIs) to make their own programming processes more efficient and reduce the number of bugs (e.g., to check whether the user input is a valid date, to input the current temperature from another city).
Incorporate existing code, media, and libraries into original programs, and give attribution.
Descriptive Statement:
Building on the work of others enables students to produce more interesting and powerful creations. Students use portions of code, algorithms, digital media, and/or data created by others in their own programs and websites. They give attribution to the original creators to acknowledge their contributions. For example, when creating a side-scrolling game, students may incorporate portions of code that create a realistic jump movement from another person's game, and they may also import Creative Commons-licensed images to use in the background. Alternatively, when creating a website to demonstrate their knowledge of historical figures from the Civil War, students may use a professionally-designed template and public domain images of historical figures. (HSS.8.10.5) Additionally, students could import libraries and connect to web application program interfaces (APIs) to make their own programming processes more efficient and reduce the number of bugs (e.g., to check whether the user input is a valid date, to input the current temperature from another city).
Standard Identifier: 6-8.AP.17
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Testing and Refining Computational Artifacts (6.1)
Standard:
Systematically test and refine programs using a range of test cases.
Descriptive Statement:
Use cases and test cases are created to evaluate whether programs function as intended. At this level, students develop use cases and test cases with teacher guidance. Testing should become a deliberate process that is more iterative, systematic, and proactive than at lower levels. For example, students test programs by considering potential errors, such as what will happen if a user enters invalid input (e.g., negative numbers and 0 instead of positive numbers). Alternatively, in an interactive program, students could test that the character cannot move off of the screen in any direction, cannot move through walls, and can interact with other characters. They then adjust character behavior as needed.
Systematically test and refine programs using a range of test cases.
Descriptive Statement:
Use cases and test cases are created to evaluate whether programs function as intended. At this level, students develop use cases and test cases with teacher guidance. Testing should become a deliberate process that is more iterative, systematic, and proactive than at lower levels. For example, students test programs by considering potential errors, such as what will happen if a user enters invalid input (e.g., negative numbers and 0 instead of positive numbers). Alternatively, in an interactive program, students could test that the character cannot move off of the screen in any direction, cannot move through walls, and can interact with other characters. They then adjust character behavior as needed.
Standard Identifier: 6-8.AP.18
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Collaborating Around Computing, Creating Computational Artifacts (2.2, 5.1)
Standard:
Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.
Descriptive Statement:
Collaboration is a common and crucial practice in programming development. Often, many individuals and groups work on the interdependent parts of a project together. Students assume pre-defined roles within their teams and manage the project workflow using structured timelines. With teacher guidance, they begin to create collective goals, expectations, and equitable workloads. For example, students could decompose the design stage of a game into planning the storyboard, flowchart, and different parts of the game mechanics. They can then distribute tasks and roles among members of the team and assign deadlines. Alternatively, students could work as a team to develop a storyboard for an animation representing a written narrative, and then program the scenes individually. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3)
Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.
Descriptive Statement:
Collaboration is a common and crucial practice in programming development. Often, many individuals and groups work on the interdependent parts of a project together. Students assume pre-defined roles within their teams and manage the project workflow using structured timelines. With teacher guidance, they begin to create collective goals, expectations, and equitable workloads. For example, students could decompose the design stage of a game into planning the storyboard, flowchart, and different parts of the game mechanics. They can then distribute tasks and roles among members of the team and assign deadlines. Alternatively, students could work as a team to develop a storyboard for an animation representing a written narrative, and then program the scenes individually. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3)
Standard Identifier: 6-8.AP.19
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Communicating About Computing (7.2)
Standard:
Document programs in order to make them easier to use, read, test, and debug.
Descriptive Statement:
Documentation allows creators, end users, and other developers to more easily use and understand a program. Students provide documentation for end users that explains their artifacts and how they function (e.g., project overview, user instructions). They also include comments within code to describe portions of their programs and make it easier for themselves and other developers to use, read, test, and debug. For example, students could add comments to describe functionality of different segments of code (e.g., input scores between 0 and 100, check for invalid input, calculate and display the average of the scores). They could also communicate the process used by writing design documents, creating flowcharts, or making presentations. (CA CCSS for ELA/Literacy SL.6.5, SL.7.5, SL.8.5)
Document programs in order to make them easier to use, read, test, and debug.
Descriptive Statement:
Documentation allows creators, end users, and other developers to more easily use and understand a program. Students provide documentation for end users that explains their artifacts and how they function (e.g., project overview, user instructions). They also include comments within code to describe portions of their programs and make it easier for themselves and other developers to use, read, test, and debug. For example, students could add comments to describe functionality of different segments of code (e.g., input scores between 0 and 100, check for invalid input, calculate and display the average of the scores). They could also communicate the process used by writing design documents, creating flowcharts, or making presentations. (CA CCSS for ELA/Literacy SL.6.5, SL.7.5, SL.8.5)
Standard Identifier: 6-8.DA.8
Grade Range:
6–8
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Communicating About Computing (7.1)
Standard:
Collect data using computational tools and transform the data to make it more useful.
Descriptive Statement:
Data collection has become easier and more ubiquitous. The cleaning of data is an important transformation for ensuring consistent format, reducing noise and errors (e.g., removing irrelevant responses in a survey), and/or making it easier for computers to process. Students build on their ability to organize and present data visually to support a claim, understanding when and how to transform data so information can be more easily extracted. Students also transform data to highlight or expose relationships. For example, students could use computational tools to collect data from their peers regarding the percentage of time technology is used for school work and entertainment, and then create digital displays of their data and findings. Students could then transform the data to highlight relationships representing males and females as percentages of a whole instead of as individual counts. (CA CCSS for Mathematics 6.SP.4, 7.SP.3, 8.SP.1, 8.SP.4) Alternatively, students could collect data from online forms and surveys, from a sensor, or by scraping a web page, and then transform the data to expose relationships. They could highlight the distribution of data (e.g., words on a web page, readings from a sensor) by giving quantitative measures of center and variability. (CA CCSS for Mathematics 6.SP.5.c, 7.SP.4)
Collect data using computational tools and transform the data to make it more useful.
Descriptive Statement:
Data collection has become easier and more ubiquitous. The cleaning of data is an important transformation for ensuring consistent format, reducing noise and errors (e.g., removing irrelevant responses in a survey), and/or making it easier for computers to process. Students build on their ability to organize and present data visually to support a claim, understanding when and how to transform data so information can be more easily extracted. Students also transform data to highlight or expose relationships. For example, students could use computational tools to collect data from their peers regarding the percentage of time technology is used for school work and entertainment, and then create digital displays of their data and findings. Students could then transform the data to highlight relationships representing males and females as percentages of a whole instead of as individual counts. (CA CCSS for Mathematics 6.SP.4, 7.SP.3, 8.SP.1, 8.SP.4) Alternatively, students could collect data from online forms and surveys, from a sensor, or by scraping a web page, and then transform the data to expose relationships. They could highlight the distribution of data (e.g., words on a web page, readings from a sensor) by giving quantitative measures of center and variability. (CA CCSS for Mathematics 6.SP.5.c, 7.SP.4)
Standard Identifier: 9-12.AP.18
Grade Range:
9–12
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Fostering an Inclusive Computing Culture, Creating Computational Artifacts (1.1, 5.1)
Standard:
Systematically design programs for broad audiences by incorporating feedback from users.
Descriptive Statement:
Programmers use a systematic design and review process to meet the needs of a broad audience. The process includes planning to meet user needs, developing software for broad audiences, testing users from a cross-section of the audience, and refining designs based on feedback. For example, students could create a user satisfaction survey and brainstorm distribution methods to collect feedback about a mobile application. After collecting feedback from a diverse audience, students could incorporate feedback into their product design. Alternatively, while developing an e-textiles project with human touch sensors, students could collect data from peers and identify design changes needed to improve usability by users of different needs.
Systematically design programs for broad audiences by incorporating feedback from users.
Descriptive Statement:
Programmers use a systematic design and review process to meet the needs of a broad audience. The process includes planning to meet user needs, developing software for broad audiences, testing users from a cross-section of the audience, and refining designs based on feedback. For example, students could create a user satisfaction survey and brainstorm distribution methods to collect feedback about a mobile application. After collecting feedback from a diverse audience, students could incorporate feedback into their product design. Alternatively, while developing an e-textiles project with human touch sensors, students could collect data from peers and identify design changes needed to improve usability by users of different needs.
Standard Identifier: 9-12.AP.19
Grade Range:
9–12
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Communicating About Computing (7.3)
Standard:
Explain the limitations of licenses that restrict use of computational artifacts when using resources such as libraries.
Descriptive Statement:
Software licenses include copyright, freeware, and open-source licensing schemes. Licenses are used to protect the intellectual property of the author while also defining accessibility of the code. Students consider licensing implications for their own work, especially when incorporating libraries and other resources. For example, students might consider two software libraries that address a similar need, justifying their choice of one over the other. The choice could be based upon least restrictive licensing or further protections for their own intellectual property.
Explain the limitations of licenses that restrict use of computational artifacts when using resources such as libraries.
Descriptive Statement:
Software licenses include copyright, freeware, and open-source licensing schemes. Licenses are used to protect the intellectual property of the author while also defining accessibility of the code. Students consider licensing implications for their own work, especially when incorporating libraries and other resources. For example, students might consider two software libraries that address a similar need, justifying their choice of one over the other. The choice could be based upon least restrictive licensing or further protections for their own intellectual property.
Standard Identifier: 9-12.AP.20
Grade Range:
9–12
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Testing and Refining Computational Artifacts (6.3)
Standard:
Iteratively evaluate and refine a computational artifact to enhance its performance, reliability, usability, and accessibility.
Descriptive Statement:
Evaluation and refinement of computational artifacts involves measuring, testing, debugging, and responding to the changing needs and expectations of users. Aspects that can be evaluated include correctness, performance, reliability, usability, and accessibility. For example, after witnessing common errors with user input in a computational artifact, students could refine the artifact to validate user input and provide an error message if invalid data is provided. Alternatively, students could observe a robot in a variety of lighting conditions to determine whether the code controlling a light sensor should be modified to make it less sensitive. Additionally, students could also incorporate feedback from a variety of end users to help guide the size and placement of menus and buttons in a user interface.
Iteratively evaluate and refine a computational artifact to enhance its performance, reliability, usability, and accessibility.
Descriptive Statement:
Evaluation and refinement of computational artifacts involves measuring, testing, debugging, and responding to the changing needs and expectations of users. Aspects that can be evaluated include correctness, performance, reliability, usability, and accessibility. For example, after witnessing common errors with user input in a computational artifact, students could refine the artifact to validate user input and provide an error message if invalid data is provided. Alternatively, students could observe a robot in a variety of lighting conditions to determine whether the code controlling a light sensor should be modified to make it less sensitive. Additionally, students could also incorporate feedback from a variety of end users to help guide the size and placement of menus and buttons in a user interface.
Showing 11 - 20 of 33 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881