Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 11 - 20 of 21 Standards

Standard Identifier: 6-8.NI.5

Grade Range: 6–8
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Recognizing and Defining Computational Problems (3.1, 3.3)

Standard:
Explain potential security threats and security measures to mitigate threats.

Descriptive Statement:
Cybersecurity is an important field of study and it is valuable for students to understand the need for protecting sensitive data. Students identify multiple methods for protecting data and articulate the value and appropriateness for each method. Students are not expected to implement or explain the implementation of such technologies. For example, students could explain the importance of keeping passwords hidden, setting secure router administrator passwords, erasing a storage device before it is reused, and using firewalls to restrict access to private networks. Alternatively, students could explain the importance of two-factor authentication and HTTPS connections to ensure secure data transmission.

Standard Identifier: 9-12.AP.18

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Fostering an Inclusive Computing Culture, Creating Computational Artifacts (1.1, 5.1)

Standard:
Systematically design programs for broad audiences by incorporating feedback from users.

Descriptive Statement:
Programmers use a systematic design and review process to meet the needs of a broad audience. The process includes planning to meet user needs, developing software for broad audiences, testing users from a cross-section of the audience, and refining designs based on feedback. For example, students could create a user satisfaction survey and brainstorm distribution methods to collect feedback about a mobile application. After collecting feedback from a diverse audience, students could incorporate feedback into their product design. Alternatively, while developing an e-textiles project with human touch sensors, students could collect data from peers and identify design changes needed to improve usability by users of different needs.

Standard Identifier: 9-12.AP.20

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Testing and Refining Computational Artifacts (6.3)

Standard:
Iteratively evaluate and refine a computational artifact to enhance its performance, reliability, usability, and accessibility.

Descriptive Statement:
Evaluation and refinement of computational artifacts involves measuring, testing, debugging, and responding to the changing needs and expectations of users. Aspects that can be evaluated include correctness, performance, reliability, usability, and accessibility. For example, after witnessing common errors with user input in a computational artifact, students could refine the artifact to validate user input and provide an error message if invalid data is provided. Alternatively, students could observe a robot in a variety of lighting conditions to determine whether the code controlling a light sensor should be modified to make it less sensitive. Additionally, students could also incorporate feedback from a variety of end users to help guide the size and placement of menus and buttons in a user interface.

Standard Identifier: 9-12.AP.21

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Collaborating Around Computing (2.4)

Standard:
Design and develop computational artifacts working in team roles using collaborative tools.

Descriptive Statement:
Collaborative tools can be as complex as a source code version control system or as simple as a collaborative word processor. Team roles in pair programming are driver and navigator but students can take on more specialized roles in larger teams. Teachers or students should choose resources that aid collaborative program development as programs grow more complex. For example, students might work as a team to develop a mobile application that addresses a problem relevant to the school or community, using appropriate tools to support actions such as: establish and manage the project timeline; design, share, and revise graphical user interface elements; implement program components, track planned, in-progress, and completed components, and design and implement user testing.

Standard Identifier: 9-12.NI.7

Grade Range: 9–12
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.3, 4.4)

Standard:
Compare and contrast cryptographic techniques to model the secure transmission of information.

Descriptive Statement:
Cryptography is a technique for transforming information on a computer in such a way that it becomes unreadable by anyone except authorized parties. Cryptography is useful for supporting secure communication of data across networks. Examples of cryptographic methods include hashing, symmetric encryption/decryption (private key), and assymmetric encryption/decryption (public key/private key). Students use software to encode and decode messages using cryptographic methods. Students compare the costs and benefits of using various cryptographic methods. At this level, students are not expected to perform the mathematical calculations associated with encryption and decryption. For example, students could compare and contrast multiple examples of symmetric cryptographic techiques. Alternatively, students could compare and contrast symmetric and asymmetric cryptographic techniques in which they apply for a given scenario.

Standard Identifier: 9-12S.AP.19

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Collaborating Around Computing, Creating Computational Artifacts (2.2, 2.3, 5.2)

Standard:
Plan and develop programs for broad audiences using a specific software life cycle process.

Descriptive Statement:
Software development processes are used to help manage the design, development, and product/project management of a software solution. Various types of processes have been developed over time to meet changing needs in the software landscape. The systems development life cycle (SDLC), also referred to as the application development life cycle, is a term used in systems engineering, information systems, and software engineering to describe a process for planning, creating, testing, and deploying an information system. Other examples of common processes could include agile, spiral, or waterfall. Students develop a program following a specific software life cycle process, with proper scaffolding from the teacher. For example, students could work in teams on a common project using the agile development process, which is based on breaking product development work into small increments. Alternatively, students could be guided in implementing sprints to focus work on daily standup meetings or scrums to support efficient communication.

Standard Identifier: 9-12S.AP.21

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Testing and Refining Computational Artifacts (6.2)

Standard:
Identify and fix security issues that might compromise computer programs.

Descriptive Statement:
Some common forms of security issues arise from specific programming languages, platforms, or program implementation choices. Students read a given a piece of code that contains a common security vulnerability, explain the code's intended function or purpose, provide and explain examples of how a specific input could exploit that vulnerability (e.g., the program accessing data or performing in unintended ways), and implement a change in the code to mitigate this vulnerability. For example, students could review code that takes a date as input, recognize that the code doesn't check for appropriate last days of the month, and modify the code to do that. Alternatively, students could review code that supports entry of patient data (e.g., height and weight) and doesn't prompt users to double check unreasonable values (e.g., height at 6 feet and weight at 20 pounds).

Standard Identifier: 9-12S.AP.22

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Testing and Refining Computational Artifacts (6.1)

Standard:
Develop and use a series of test cases to verify that a program performs according to its design specifications.

Descriptive Statement:
Testing software is a critically important process. The ability of students to identify a set of important test cases communicates their understanding of the design specifications and potential issues due to implementation choices. Students select and apply their own test cases to cover both general behavior and the edge cases which show behavior at boundary conditions. For example, for a program that is supposed to accept test scores in the range of [0,100], students could develop appropriate tests (e.g, a negative value, 0, 100, and a value above 100). Alternatively, students developing an app to allow users to create and store calendar appointments could develop and use a series of test cases for various scenarios including checking for correct dates, flagging for user confirmation when a calendar event is very long, checking for correct email address format for invitees, and checking for appropriate screen display as users go through the process of adding, editing, and deleting events.

Standard Identifier: 9-12S.AP.24

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Testing and Refining Computational Artifacts (6.3)

Standard:
Evaluate key qualities of a program through a process such as a code review.

Descriptive Statement:
Code reviews are a common software industry practice and valuable for developing technical communication skills. Key qualities of code include correctness, usability, readability, efficiency, and scalability. Students walk through code they created and explain how it works. Additionally, they follow along when someone else is explaining their code and ask appropriate questions. For example, students could present their code to a group or visually inspect code in pairs. Alternatively, in response to another student's presentation, students could provide feedback including comments on correctness of the code, comments on how code interacts with code that calls it, and design and documentation features.

Standard Identifier: 9-12S.AP.25

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Collaborating Around Computing, Creating Computational Artifacts (2.4, 5.2)

Standard:
Use version control systems, integrated development environments (IDEs), and collaborative tools and practices (e.g., code documentation) while developing software within a group.

Descriptive Statement:
Software development is a process that benefits from the use of tools that manage complexity, iterative development, and collaboration. Large or complex software projects often require contributions from multiple developers. Version control systems and other collaborative tools and practices help coordinate the process and products contributed by individuals on a development team. An integrated development environment (IDE) is a program within which a developer implements, compiles or interprets, tests, debugs, and deploys a software project. Students use common software development and documentation support tools in the context of a group software development project. At this level, facility with the full functionality available in the collaborative tools is not expected. For example, students could use common version control systems to modify and improve code or revert to a previous code version. Alternatively, students could use appropriate IDEs to support more efficient code design and development. Additionally, students could use various collaboration, communication, and code documentation tools designed to support groups engaging in complex and interrelated work.

Showing 11 - 20 of 21 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881