Computer Science Standards
Results
Showing 1 - 10 of 16 Standards
Standard Identifier: K-2.AP.10
Grade Range:
K–2
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.2, 4.4)
Standard:
Model daily processes by creating and following algorithms to complete tasks.
Descriptive Statement:
Algorithms are sequences of instructions that describe how to complete a specific task. Students create algorithms that reflect simple life tasks inside and outside of the classroom. For example, students could create algorithms to represent daily routines for getting ready for school, transitioning through center rotations, eating lunch, and putting away art materials. Students could then write a narrative sequence of events. (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3) Alternatively, students could create a game or a dance with a specific set of movements to reach an intentional goal or objective. (P.E K.2, 1.2, 2.2) Additionally, students could create a map of their neighborhood and give step-by-step directions of how they get to school. (HSS.K.4, 1.2, 2.2)
Model daily processes by creating and following algorithms to complete tasks.
Descriptive Statement:
Algorithms are sequences of instructions that describe how to complete a specific task. Students create algorithms that reflect simple life tasks inside and outside of the classroom. For example, students could create algorithms to represent daily routines for getting ready for school, transitioning through center rotations, eating lunch, and putting away art materials. Students could then write a narrative sequence of events. (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3) Alternatively, students could create a game or a dance with a specific set of movements to reach an intentional goal or objective. (P.E K.2, 1.2, 2.2) Additionally, students could create a map of their neighborhood and give step-by-step directions of how they get to school. (HSS.K.4, 1.2, 2.2)
Standard Identifier: K-2.IC.20
Grade Range:
K–2
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Describe approaches and rationales for keeping login information private, and for logging off of devices appropriately.
Descriptive Statement:
People use computing technology in ways that can help or hurt themselves and/or others. Harmful behaviors, such as sharing passwords or other private information and leaving public devices logged in should be recognized and avoided. Students keep login information private, log off of devices appropriately, and discuss the importance of these practices. For example, while learning about individual responsibility and citizenship, students could create a "privacy folder" to store login information, and keep this folder in a secure location that is not easily seen and accessed by classmates. Students could discuss the relative benefits and impacts of choosing to store passwords in a folder online versus on paper. They could also describe how using the same login and password across many systems and apps could lead to significant security issues and requires even more vigilance in maintaining security. (HSS K.1) Alternatively, students can write an informational piece regarding the importance of keeping login information private and logging off of public devices. (CA CCSS for ELA/Literacy W.K.2, W.1.2, W.2.2)
Describe approaches and rationales for keeping login information private, and for logging off of devices appropriately.
Descriptive Statement:
People use computing technology in ways that can help or hurt themselves and/or others. Harmful behaviors, such as sharing passwords or other private information and leaving public devices logged in should be recognized and avoided. Students keep login information private, log off of devices appropriately, and discuss the importance of these practices. For example, while learning about individual responsibility and citizenship, students could create a "privacy folder" to store login information, and keep this folder in a secure location that is not easily seen and accessed by classmates. Students could discuss the relative benefits and impacts of choosing to store passwords in a folder online versus on paper. They could also describe how using the same login and password across many systems and apps could lead to significant security issues and requires even more vigilance in maintaining security. (HSS K.1) Alternatively, students can write an informational piece regarding the importance of keeping login information private and logging off of public devices. (CA CCSS for ELA/Literacy W.K.2, W.1.2, W.2.2)
Standard Identifier: 3-5.AP.10
Grade Range:
3–5
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Recognizing and Defining Computational Problems, Testing and Refining Computational Artifacts (3.3, 6.3)
Standard:
Compare and refine multiple algorithms for the same task and determine which is the most appropriate.
Descriptive Statement:
Different algorithms can achieve the same result, though sometimes one algorithm might be more appropriate for a specific solution. Students examine different ways to solve the same task and decide which would be the better solution for the specific scenario. For example, students could use a map and create multiple algorithms to model the early land and sea routes to and from European settlements in California. They could then compare and refine their algorithms to reflect faster travel times, shorter distances, or avoid specific characteristics, such as mountains, deserts, ocean currents, and wind patterns. (HSS.4.2.2) Alternatively, students could identify multiple algorithms for decomposing a fraction into a sum of fractions with the same denominator and record each decomposition with an equation (e.g., 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8). Students could then select the most efficient algorithm (e.g., fewest number of steps). (CA CCSS for Mathematics 4.NF.3b) Additionally, students could compare algorithms that describe how to get ready for school and modify them for supporting different goals including having time to care for a pet, being able to talk with a friend before classes start, or taking a longer route to school to accompany a younger sibling to their school first. Students could then write an opinion piece, justifying with reasons their selected algorithm is most appropriate. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)
Compare and refine multiple algorithms for the same task and determine which is the most appropriate.
Descriptive Statement:
Different algorithms can achieve the same result, though sometimes one algorithm might be more appropriate for a specific solution. Students examine different ways to solve the same task and decide which would be the better solution for the specific scenario. For example, students could use a map and create multiple algorithms to model the early land and sea routes to and from European settlements in California. They could then compare and refine their algorithms to reflect faster travel times, shorter distances, or avoid specific characteristics, such as mountains, deserts, ocean currents, and wind patterns. (HSS.4.2.2) Alternatively, students could identify multiple algorithms for decomposing a fraction into a sum of fractions with the same denominator and record each decomposition with an equation (e.g., 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8). Students could then select the most efficient algorithm (e.g., fewest number of steps). (CA CCSS for Mathematics 4.NF.3b) Additionally, students could compare algorithms that describe how to get ready for school and modify them for supporting different goals including having time to care for a pet, being able to talk with a friend before classes start, or taking a longer route to school to accompany a younger sibling to their school first. Students could then write an opinion piece, justifying with reasons their selected algorithm is most appropriate. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)
Standard Identifier: 3-5.IC.23
Grade Range:
3–5
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.3)
Standard:
Describe reasons creators might limit the use of their work.
Descriptive Statement:
Ethical complications arise from the opportunities provided by computing. With the ease of sending and receiving copies of media on the Internet, in formats such as video, photos, and music, students consider the opportunities for unauthorized use, such as online piracy and disregard of copyrights. The license of a downloaded image or audio file may restrict modification, require attribution, or prohibit use entirely. For example, students could take part in a collaborative discussion regarding reasons why musicians who sell their songs in digital format choose to license their work so that they can earn money for their creative efforts. If others share the songs without paying for them, the musicians do not benefit financially and may struggle to produce music in the future. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could review the rights and reproduction guidelines for digital artifacts on a publicly accessible media source. They could then state an opinion with reasons they believe these guidelines are in place. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)
Describe reasons creators might limit the use of their work.
Descriptive Statement:
Ethical complications arise from the opportunities provided by computing. With the ease of sending and receiving copies of media on the Internet, in formats such as video, photos, and music, students consider the opportunities for unauthorized use, such as online piracy and disregard of copyrights. The license of a downloaded image or audio file may restrict modification, require attribution, or prohibit use entirely. For example, students could take part in a collaborative discussion regarding reasons why musicians who sell their songs in digital format choose to license their work so that they can earn money for their creative efforts. If others share the songs without paying for them, the musicians do not benefit financially and may struggle to produce music in the future. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could review the rights and reproduction guidelines for digital artifacts on a publicly accessible media source. They could then state an opinion with reasons they believe these guidelines are in place. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)
Standard Identifier: 6-8.AP.10
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Developing and Using Abstractions (4.1, 4.4)
Standard:
Use flowcharts and/or pseudocode to design and illustrate algorithms that solve complex problems.
Descriptive Statement:
Complex problems are problems that would be difficult for students to solve without breaking them down into multiple steps. Flowcharts and pseudocode are used to design and illustrate the breakdown of steps in an algorithm. Students design and illustrate algorithms using pseudocode and/or flowcharts that organize and sequence the breakdown of steps for solving complex problems. For example, students might use a flowchart to illustrate an algorithm that produces a recommendation for purchasing sneakers based on inputs such as size, colors, brand, comfort, and cost. Alternatively, students could write pseudocode to express an algorithm for suggesting their outfit for the day, based on inputs such as the weather, color preferences, and day of the week.
Use flowcharts and/or pseudocode to design and illustrate algorithms that solve complex problems.
Descriptive Statement:
Complex problems are problems that would be difficult for students to solve without breaking them down into multiple steps. Flowcharts and pseudocode are used to design and illustrate the breakdown of steps in an algorithm. Students design and illustrate algorithms using pseudocode and/or flowcharts that organize and sequence the breakdown of steps for solving complex problems. For example, students might use a flowchart to illustrate an algorithm that produces a recommendation for purchasing sneakers based on inputs such as size, colors, brand, comfort, and cost. Alternatively, students could write pseudocode to express an algorithm for suggesting their outfit for the day, based on inputs such as the weather, color preferences, and day of the week.
Standard Identifier: 6-8.IC.23
Grade Range:
6–8
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.3)
Standard:
Compare tradeoffs associated with licenses for computational artifacts to balance the protection of the creators' rights and the ability for others to use and modify the artifacts.
Descriptive Statement:
Using and building on the works of others allows people to create meaningful works and fosters innovation. Copyright is an important law that helps protect the rights of creators so they receive credit and get paid for their work. Creative Commons is a kind of copyright that makes it easier for people to copy, share, and build on creative work, as long as they give credit for it. There are different kinds of Creative Commons licenses that allow people to do things such as change, remix, or make money from their work. As creators, students can pick and choose how they want their work to be used, and then create a Creative Commons license that they include in their work. For example, students could create interactive animations to educate others on bullying or protecting the environment. They then select an appropriate license to reflect how they want their program to be used by others (e.g., allow others to use their work and alter it, as long as they do not make a profit from it). Students use established methods to both protect their artifacts and attribute use of protected artifacts.
Compare tradeoffs associated with licenses for computational artifacts to balance the protection of the creators' rights and the ability for others to use and modify the artifacts.
Descriptive Statement:
Using and building on the works of others allows people to create meaningful works and fosters innovation. Copyright is an important law that helps protect the rights of creators so they receive credit and get paid for their work. Creative Commons is a kind of copyright that makes it easier for people to copy, share, and build on creative work, as long as they give credit for it. There are different kinds of Creative Commons licenses that allow people to do things such as change, remix, or make money from their work. As creators, students can pick and choose how they want their work to be used, and then create a Creative Commons license that they include in their work. For example, students could create interactive animations to educate others on bullying or protecting the environment. They then select an appropriate license to reflect how they want their program to be used by others (e.g., allow others to use their work and alter it, as long as they do not make a profit from it). Students use established methods to both protect their artifacts and attribute use of protected artifacts.
Standard Identifier: 6-8.IC.24
Grade Range:
6–8
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.2)
Standard:
Compare tradeoffs between allowing information to be public and keeping information private and secure.
Descriptive Statement:
While it is valuable to establish, maintain, and strengthen connections between people online, security attacks often start with intentionally or unintentionally providing personal information online. Students identify situations where the value of keeping information public outweighs privacy concerns, and vice versa. They also recognize practices such as phishing and social engineering and explain best practices to defend against them. For example, students could discuss the benefits of artists and designers displaying their work online to reach a broader audience. Students could also compare the tradeoffs of making a shared file accessible to anyone versus restricting it to specific accounts. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1) Alternatively, students could discuss the benefits and dangers of the increased accessibility of information available on the internet, and then compare this to the advantages and disadvantages of the introduction of the printing press in society. (HSS.7.8.4)
Compare tradeoffs between allowing information to be public and keeping information private and secure.
Descriptive Statement:
While it is valuable to establish, maintain, and strengthen connections between people online, security attacks often start with intentionally or unintentionally providing personal information online. Students identify situations where the value of keeping information public outweighs privacy concerns, and vice versa. They also recognize practices such as phishing and social engineering and explain best practices to defend against them. For example, students could discuss the benefits of artists and designers displaying their work online to reach a broader audience. Students could also compare the tradeoffs of making a shared file accessible to anyone versus restricting it to specific accounts. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1) Alternatively, students could discuss the benefits and dangers of the increased accessibility of information available on the internet, and then compare this to the advantages and disadvantages of the introduction of the printing press in society. (HSS.7.8.4)
Standard Identifier: 9-12.AP.12
Grade Range:
9–12
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.1)
Standard:
Design algorithms to solve computational problems using a combination of original and existing algorithms.
Descriptive Statement:
Knowledge of common algorithms improves how people develop software, secure data, and store information. Some algorithms may be easier to implement in a particular programming language, work faster, require less memory to store data, and be applicable in a wider variety of situations than other algorithms. Algorithms used to search and sort data are common in a variety of software applications. For example, students could design an algorithm to calculate and display various sports statistics and use common sorting or mathematical algorithms (e.g., average) in the design of the overall algorithm. Alternatively, students could design an algorithm to implement a game and use existing randomization algorithms to place pieces randomly in starting positions or to control the "roll" of a dice or selection of a "card" from a deck.
Design algorithms to solve computational problems using a combination of original and existing algorithms.
Descriptive Statement:
Knowledge of common algorithms improves how people develop software, secure data, and store information. Some algorithms may be easier to implement in a particular programming language, work faster, require less memory to store data, and be applicable in a wider variety of situations than other algorithms. Algorithms used to search and sort data are common in a variety of software applications. For example, students could design an algorithm to calculate and display various sports statistics and use common sorting or mathematical algorithms (e.g., average) in the design of the overall algorithm. Alternatively, students could design an algorithm to implement a game and use existing randomization algorithms to place pieces randomly in starting positions or to control the "roll" of a dice or selection of a "card" from a deck.
Standard Identifier: 9-12.IC.28
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.3)
Standard:
Explain the beneficial and harmful effects that intellectual property laws can have on innovation.
Descriptive Statement:
Laws and ethics govern aspects of computing such as privacy, data, property, information, and identity. Students explain the beneficial and harmful effects of intellectual property laws as they relate to potential innovations and governance. For example, students could explain how patents protect inventions but may limit innovation. Alternatively, students could explain how intellectual property laws requiring that artists be paid for use of their media might limit the choice of songs developers can use in their computational artifacts.
Explain the beneficial and harmful effects that intellectual property laws can have on innovation.
Descriptive Statement:
Laws and ethics govern aspects of computing such as privacy, data, property, information, and identity. Students explain the beneficial and harmful effects of intellectual property laws as they relate to potential innovations and governance. For example, students could explain how patents protect inventions but may limit innovation. Alternatively, students could explain how intellectual property laws requiring that artists be paid for use of their media might limit the choice of songs developers can use in their computational artifacts.
Standard Identifier: 9-12.IC.29
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.2)
Standard:
Explain the privacy concerns related to the collection and generation of data through automated processes.
Descriptive Statement:
Data can be collected and aggregated across millions of people, even when they are not actively engaging with or physically near the data collection devices. Students recognize automated and non-evident collection of information and the privacy concerns they raise for individuals. For example, students could explain the impact on an individual when a social media site's security settings allows for mining of account information even when the user is not online. Alternatively, students could discuss the impact on individuals of using surveillance video in a store to track customers. Additionally, students could discuss how road traffic can be monitored to change signals in real time to improve road efficiency without drivers being aware and discuss policies for retaining data that identifies drivers' cars and their behaviors.
Explain the privacy concerns related to the collection and generation of data through automated processes.
Descriptive Statement:
Data can be collected and aggregated across millions of people, even when they are not actively engaging with or physically near the data collection devices. Students recognize automated and non-evident collection of information and the privacy concerns they raise for individuals. For example, students could explain the impact on an individual when a social media site's security settings allows for mining of account information even when the user is not online. Alternatively, students could discuss the impact on individuals of using surveillance video in a store to track customers. Additionally, students could discuss how road traffic can be monitored to change signals in real time to improve road efficiency without drivers being aware and discuss policies for retaining data that identifies drivers' cars and their behaviors.
Showing 1 - 10 of 16 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881