Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 1 - 10 of 13 Standards

Standard Identifier: K-2.DA.7

Grade Range: K–2
Concept: Data & Analysis
Subconcept: Storage
Practice(s): Developing and Using Abstractions (4.2)

Standard:
Store, copy, search, retrieve, modify, and delete information using a computing device, and define the information stored as data.

Descriptive Statement:
Information from the real world can be stored and processed by a computing device. When stored on a computing device, it is referred to as data. Data can include images, text documents, audio files, and video files. Students store, copy, search, retrieve, modify, and delete information using a computing device and define the information stored as data. For example, students could produce a story using a computing device, storing it locally or remotely (e.g., in the cloud). They could then make a copy of the story for peer revision and editing. When the final copy of the story is complete, students delete any unnecessary files. They search for and retrieve data from a local or remote source, depending on where it was stored. (CA CCSS for ELA/Literacy W.K.6, W.K.5, W1.6, W.1.5, W.2.6, W.2.5) Alternatively, students could record their voices singing an age-appropriate song. They could store the data on a computing device, search for peers' audio files, retrieve their own files, and delete unnecesary takes. (VAPA Music K.2.2, 1.2.2, 2.2.2)

Standard Identifier: K-2.IC.20

Grade Range: K–2
Concept: Impacts of Computing
Subconcept: Safety, Law, & Ethics
Practice(s): Recognizing and Defining Computational Problems (3.1)

Standard:
Describe approaches and rationales for keeping login information private, and for logging off of devices appropriately.

Descriptive Statement:
People use computing technology in ways that can help or hurt themselves and/or others. Harmful behaviors, such as sharing passwords or other private information and leaving public devices logged in should be recognized and avoided. Students keep login information private, log off of devices appropriately, and discuss the importance of these practices. For example, while learning about individual responsibility and citizenship, students could create a "privacy folder" to store login information, and keep this folder in a secure location that is not easily seen and accessed by classmates. Students could discuss the relative benefits and impacts of choosing to store passwords in a folder online versus on paper. They could also describe how using the same login and password across many systems and apps could lead to significant security issues and requires even more vigilance in maintaining security. (HSS K.1) Alternatively, students can write an informational piece regarding the importance of keeping login information private and logging off of public devices. (CA CCSS for ELA/Literacy W.K.2, W.1.2, W.2.2)

Standard Identifier: 3-5.DA.7

Grade Range: 3–5
Concept: Data & Analysis
Subconcept: Storage
Practice(s): Developing and Using Abstractions (4.2)

Standard:
Explain that the amount of space required to store data differs based on the type of data and/or level of detail.

Descriptive Statement:
All saved data requires space to store it, whether locally or not (e.g., on the cloud). Music, images, video, and text require different amounts of storage. Video will often require more storage and different format than music or images alone because video combines both. The level of detail represented by that data also affects storage requirements. For instance, two pictures of the same object can require different amounts of storage based upon their resolution, and a high-resolution photo could require more storage than a low-resolution video. Students select appropriate storage for their data. For example, students could create an image using a standard drawing app. They could save the image in different formats (e.g., .png, .jpg, .pdf) and compare file sizes. They should also notice that different file sizes can result in differences in quality or resolution (e.g., some pictures could be more pixelated while some could be sharper). Alternatively, in an unplugged activity, students could represent images by coloring in squares within a large grid. They could model how a larger grid requires more storage but also represents a clearer image (i.e., higher resolution).

Standard Identifier: 3-5.IC.23

Grade Range: 3–5
Concept: Impacts of Computing
Subconcept: Safety, Law, & Ethics
Practice(s): Communicating About Computing (7.3)

Standard:
Describe reasons creators might limit the use of their work.

Descriptive Statement:
Ethical complications arise from the opportunities provided by computing. With the ease of sending and receiving copies of media on the Internet, in formats such as video, photos, and music, students consider the opportunities for unauthorized use, such as online piracy and disregard of copyrights. The license of a downloaded image or audio file may restrict modification, require attribution, or prohibit use entirely. For example, students could take part in a collaborative discussion regarding reasons why musicians who sell their songs in digital format choose to license their work so that they can earn money for their creative efforts. If others share the songs without paying for them, the musicians do not benefit financially and may struggle to produce music in the future. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could review the rights and reproduction guidelines for digital artifacts on a publicly accessible media source. They could then state an opinion with reasons they believe these guidelines are in place. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)

Standard Identifier: 6-8.DA.7

Grade Range: 6–8
Concept: Data & Analysis
Subconcept: Storage
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Represent data in multiple ways.

Descriptive Statement:
Computers store data as sequences of 0s and 1s (bits). Software translates to and from this low-level representation to higher levels that are understandable by people. Furthermore, higher level data can be represented in multiple ways, such as the digital display of a color and its corresponding numeric RGB value, or a bar graph, a pie chart, and table representation of the same data in a spreadsheet. For example, students could use a color picker to explore the correspondence between the digital display or name of a color (high-level representations) and its RGB value or hex code (low-level representation). Alternatively, students could translate a word (high-level representation) into Morse code or its corresponding sequence of ASCII codes (low-level representation).

Standard Identifier: 6-8.IC.23

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Safety, Law, & Ethics
Practice(s): Communicating About Computing (7.3)

Standard:
Compare tradeoffs associated with licenses for computational artifacts to balance the protection of the creators' rights and the ability for others to use and modify the artifacts.

Descriptive Statement:
Using and building on the works of others allows people to create meaningful works and fosters innovation. Copyright is an important law that helps protect the rights of creators so they receive credit and get paid for their work. Creative Commons is a kind of copyright that makes it easier for people to copy, share, and build on creative work, as long as they give credit for it. There are different kinds of Creative Commons licenses that allow people to do things such as change, remix, or make money from their work. As creators, students can pick and choose how they want their work to be used, and then create a Creative Commons license that they include in their work. For example, students could create interactive animations to educate others on bullying or protecting the environment. They then select an appropriate license to reflect how they want their program to be used by others (e.g., allow others to use their work and alter it, as long as they do not make a profit from it). Students use established methods to both protect their artifacts and attribute use of protected artifacts.

Standard Identifier: 6-8.IC.24

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Safety, Law, & Ethics
Practice(s): Communicating About Computing (7.2)

Standard:
Compare tradeoffs between allowing information to be public and keeping information private and secure.

Descriptive Statement:
While it is valuable to establish, maintain, and strengthen connections between people online, security attacks often start with intentionally or unintentionally providing personal information online. Students identify situations where the value of keeping information public outweighs privacy concerns, and vice versa. They also recognize practices such as phishing and social engineering and explain best practices to defend against them. For example, students could discuss the benefits of artists and designers displaying their work online to reach a broader audience. Students could also compare the tradeoffs of making a shared file accessible to anyone versus restricting it to specific accounts. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1) Alternatively, students could discuss the benefits and dangers of the increased accessibility of information available on the internet, and then compare this to the advantages and disadvantages of the introduction of the printing press in society. (HSS.7.8.4)

Standard Identifier: 9-12.DA.8

Grade Range: 9–12
Concept: Data & Analysis
Subconcept: Storage
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Translate between different representations of data abstractions of real-world phenomena, such as characters, numbers, and images.

Descriptive Statement:
Computers represent complex real-world concepts such as characters, numbers, and images through various abstractions. Students translate between these different levels of data representations. For example, students could convert an HTML (Hyper Text Markup Language) tag for red font into RGB (Red Green Blue), HEX (Hexadecimal Color Code), HSL (Hue Saturation Lightness), RGBA( Red Green Blue Alpha), or HSLA (Hue Saturation Lightness and Alpha) representations. Alternatively, students could convert the standard representation of a character such as ! into ASCII or Unicode.

Standard Identifier: 9-12.DA.9

Grade Range: 9–12
Concept: Data & Analysis
Subconcept: Storage
Practice(s): Recognizing and Defining Computational Problems (3.3)

Standard:
Describe tradeoffs associated with how data elements are organized and stored.

Descriptive Statement:
People make choices about how data elements are organized and where data is stored. These choices affect cost, speed, reliability, accessibility, privacy, and integrity. Students describe implications for a given data organziation or storage choice in light of a specific problem. For example, students might consider the cost, speed, reliability, accessibility, privacy, and integrity tradeoffs between storing photo data on a mobile device versus in the cloud. Alternatively, students might compare the tradeoffs between file size and image quality of various image file formats and how choice of format may be infuenced by the device on which it is to be accessed (e.g., smartphone, computer).

Standard Identifier: 9-12.IC.28

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Safety, Law, & Ethics
Practice(s): Communicating About Computing (7.3)

Standard:
Explain the beneficial and harmful effects that intellectual property laws can have on innovation.

Descriptive Statement:
Laws and ethics govern aspects of computing such as privacy, data, property, information, and identity. Students explain the beneficial and harmful effects of intellectual property laws as they relate to potential innovations and governance. For example, students could explain how patents protect inventions but may limit innovation. Alternatively, students could explain how intellectual property laws requiring that artists be paid for use of their media might limit the choice of songs developers can use in their computational artifacts.

Showing 1 - 10 of 13 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881