Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 11 - 20 of 33 Standards

Standard Identifier: 3-5.NI.4

Grade Range: 3–5
Concept: Networks & the Internet
Subconcept: Network Communication & Organization
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Model how information is broken down into smaller pieces, transmitted as packets through multiple devices over networks and the Internet, and reassembled at the destination.

Descriptive Statement:
Information is sent and received over physical or wireless paths. It is broken down into smaller pieces called packets, which are sent independently and reassembled at the destination. Students demonstrate their understanding of this flow of information by, for instance, drawing a model of the way packets are transmitted, programming an animation to show how packets are transmitted, or demonstrating this through an unplugged activity in which they physically act this out. For example, students could design a structure using building blocks or other materials with the intention of re-engineering it in another location, just as early Americans did after the intercontinental railroad was constructed in the 1850s (HSS.4.4.1, 4.4.2). Students could deconstruct the designed structure, place materials into specific containers (or plastic bags/brown paper bags/etc.), and develop instructions on how to recreate the structure once each container arrives at its intended destination. (CA NGSS: 3-5-ETS1) For example, students could cut up a map of the United States by state lines. Students could then place the states in envelopes and transmit the "packets" through a physical network, represented by multiple students spreading out in arms reach of at least two others. At the destination, the student who receives the packets resassembles the individual states back into a map of the United States. (HSS 5.9) Alternatively, students could perform a similar activity with a diatonic scale, cutting the scale into individual notes. Each note, in order, should be placed into a numbered envelope based on its location on the scale. These envelopes can be transmitted across the network of students and reassembled at the destination. (VAPA Music 4.1.2)

Standard Identifier: 6-8.AP.11

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Variables
Practice(s): Creating Computational Artifacts (5.1, 5.2)

Standard:
Create clearly named variables that store data, and perform operations on their contents.

Descriptive Statement:
A variable is a container for data, and the name used for accessing the variable is called the identifier. Students declare, initialize, and update variables for storing different types of program data (e.g., text, integers) using names and naming conventions (e.g. camel case) that clearly convey the purpose of the variable, facilitate debugging, and improve readability. For example, students could program a quiz game with a score variable (e.g. quizScore) that is initially set to zero and increases by increments of one each time the user answers a quiz question correctly and decreases by increments of one each time a user answers a quiz question incorrectly, resulting in a score that is either a positive or negative integer. (CA CCSS for Mathematics 6.NS.5) Alternatively, students could write a program that prompts the user for their name, stores the user's response in a variable (e.g. userName), and uses this variable to greet the user by name.

Standard Identifier: 6-8.DA.7

Grade Range: 6–8
Concept: Data & Analysis
Subconcept: Storage
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Represent data in multiple ways.

Descriptive Statement:
Computers store data as sequences of 0s and 1s (bits). Software translates to and from this low-level representation to higher levels that are understandable by people. Furthermore, higher level data can be represented in multiple ways, such as the digital display of a color and its corresponding numeric RGB value, or a bar graph, a pie chart, and table representation of the same data in a spreadsheet. For example, students could use a color picker to explore the correspondence between the digital display or name of a color (high-level representations) and its RGB value or hex code (low-level representation). Alternatively, students could translate a word (high-level representation) into Morse code or its corresponding sequence of ASCII codes (low-level representation).

Standard Identifier: 6-8.IC.20

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Communicating About Computing (7.2)

Standard:
Compare tradeoffs associated with computing technologies that affect people's everyday activities and career options.

Descriptive Statement:
Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use computing technologies have tradeoffs. Students consider current events related to broad ideas, including privacy, communication, and automation. For example, students could compare and contrast the impacts of computing technologies with the impacts of other systems developed throughout history such as the Pony Express and US Postal System. (HSS.7.8.4) Alternatively, students could identify tradeoffs for both personal and professional uses of a variety of computing technologies. For instance, driverless cars can increase convenience and reduce accidents, but they may be susceptible to hacking. The emerging industry will reduce the number of taxi and shared-ride drivers, but may create more software engineering and cybersecurity jobs.

Standard Identifier: 6-8.IC.21

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Fostering an Inclusive Computing Culture (1.2)

Standard:
Discuss issues of bias and accessibility in the design of existing technologies.

Descriptive Statement:
Computing technologies should support users of many backgrounds and abilities. In order to maximize accessiblity, these differences need to be addressed by examining diverse populations. With the teacher's guidance, students test and discuss the usability of various technology tools, such as apps, games, and devices. For example, students could discuss the impacts of facial recognition software that works better for lighter skin tones and recognize that the software was likely developed with a homogeneous testing group. Students could then discuss how accessibility could be improved by sampling a more diverse population. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1)

Standard Identifier: 6-8.IC.22

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Social Interactions
Practice(s): Collaborating Around Computing, Creating Computational Artifacts (2.4, 5.2)

Standard:
Collaborate with many contributors when creating a computational artifact.

Descriptive Statement:
Users have diverse sets of experiences, needs, and wants. These need to be understood and integrated into the design of computational artifacts. Students use applications that enable crowdsourcing to gather services, ideas, or content from a large group of people. At this level, crowdsourcing can be done at the local level (e.g., classroom, school, or neighborhood) and/or global level (e.g., age-appropriate online communities). For example, a group of students could use electronic surveys to solicit input from their neighborhood regarding an important social or political issue. They could collaborate with a community artist to combine animations and create a digital community collage informing the public about various points of view regarding the topic. (VAPA Visual Art 8.5.2, 8.5.4)

Standard Identifier: 6-8.NI.4

Grade Range: 6–8
Concept: Networks & the Internet
Subconcept: Network Communication & Organization
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Model the role of protocols in transmitting data across networks and the Internet.

Descriptive Statement:
Protocols are rules that define how messages between computers are sent. They determine how quickly and securely information is transmitted across networks, as well as how to handle errors in transmission. Students model how data is sent using protocols to choose the fastest path and to deal with missing information. Knowledge of the details of how specific protocols work is not expected. The priority at this grade level is understanding the purpose of protocols and how they enable efficient and errorless communication. For example, students could devise a plan for sending data representing a textual message and devise a plan for resending lost information. Alternatively, students could devise a plan for sending data to represent a picture, and devise a plan for interpreting the image when pieces of the data are missing. Additionally, students could model the speed of sending messages by Bluetooth, Wi-Fi, or cellular networks and describe ways errors in data transmission can be detected and dealt with.

Standard Identifier: 9-12.AP.13

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Variables
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Create more generalized computational solutions using collections instead of repeatedly using simple variables.

Descriptive Statement:
Computers can automate repetitive tasks with algorithms that use collections to simplify and generalize computational problems. Students identify common features in multiple segments of code and substitute a single segment that uses collections (i.e., arrays, sets, lists) to account for the differences. For example, students could take a program that inputs students' scores into multiple variables and modify it to read these scores into a single array of scores. Alternatively, instead of writing one procedure to find averages of student scores and another to find averages of student absences, students could write a single general average procedure to support both tasks.

Standard Identifier: 9-12.DA.8

Grade Range: 9–12
Concept: Data & Analysis
Subconcept: Storage
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Translate between different representations of data abstractions of real-world phenomena, such as characters, numbers, and images.

Descriptive Statement:
Computers represent complex real-world concepts such as characters, numbers, and images through various abstractions. Students translate between these different levels of data representations. For example, students could convert an HTML (Hyper Text Markup Language) tag for red font into RGB (Red Green Blue), HEX (Hexadecimal Color Code), HSL (Hue Saturation Lightness), RGBA( Red Green Blue Alpha), or HSLA (Hue Saturation Lightness and Alpha) representations. Alternatively, students could convert the standard representation of a character such as ! into ASCII or Unicode.

Standard Identifier: 9-12.DA.9

Grade Range: 9–12
Concept: Data & Analysis
Subconcept: Storage
Practice(s): Recognizing and Defining Computational Problems (3.3)

Standard:
Describe tradeoffs associated with how data elements are organized and stored.

Descriptive Statement:
People make choices about how data elements are organized and where data is stored. These choices affect cost, speed, reliability, accessibility, privacy, and integrity. Students describe implications for a given data organziation or storage choice in light of a specific problem. For example, students might consider the cost, speed, reliability, accessibility, privacy, and integrity tradeoffs between storing photo data on a mobile device versus in the cloud. Alternatively, students might compare the tradeoffs between file size and image quality of various image file formats and how choice of format may be infuenced by the device on which it is to be accessed (e.g., smartphone, computer).

Showing 11 - 20 of 33 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881