Computer Science Standards
Results
Showing 1 - 4 of 4 Standards
Standard Identifier: K-2.IC.19
Grade Range:
K–2
Concept:
Impacts of Computing
Subconcept:
Social Interactions
Practice(s):
Collaborating Around Computing (2.1)
Standard:
Work respectfully and responsibly with others when communicating electronically.
Descriptive Statement:
Electronic communication facilitates positive interactions, such as sharing ideas with many people, but the public and anonymous nature of electronic communication also allows intimidating and inappropriate behavior in the form of cyberbullying. Responsible electronic communication includes limiting access to personably identifiable information. Students learn and use appropriate behavior when communicating electronically (often called "netiquette"). For example, students could share their work on a classroom blog or in other collaborative spaces online, taking care to avoid sharing information that is inappropriate or that could personally identify themselves to others. (CA CCSS for ELA/Literacy W.K.6, W.1.6, W.21.6) Alternatively, students could provide feedback to others on their work in a kind and respectful manner. They could learn how written words can be easily misinterpreted and may seem negative when the intention may be to express confusion, give ideas, or prompt further discussion. They could also learn to identify harmful behavior on collaborative spaces and intervening to find the proper authority to help. (CA CCSS for ELA/Literacy W.K.5, W.1.5, W.2.5) (HSS 1.1.2)
Work respectfully and responsibly with others when communicating electronically.
Descriptive Statement:
Electronic communication facilitates positive interactions, such as sharing ideas with many people, but the public and anonymous nature of electronic communication also allows intimidating and inappropriate behavior in the form of cyberbullying. Responsible electronic communication includes limiting access to personably identifiable information. Students learn and use appropriate behavior when communicating electronically (often called "netiquette"). For example, students could share their work on a classroom blog or in other collaborative spaces online, taking care to avoid sharing information that is inappropriate or that could personally identify themselves to others. (CA CCSS for ELA/Literacy W.K.6, W.1.6, W.21.6) Alternatively, students could provide feedback to others on their work in a kind and respectful manner. They could learn how written words can be easily misinterpreted and may seem negative when the intention may be to express confusion, give ideas, or prompt further discussion. They could also learn to identify harmful behavior on collaborative spaces and intervening to find the proper authority to help. (CA CCSS for ELA/Literacy W.K.5, W.1.5, W.2.5) (HSS 1.1.2)
Standard Identifier: 6-8.CS.1
Grade Range:
6–8
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Fostering an Inclusive Computing Culture, Recognizing and Defining Computational Problems (1.2, 3.3)
Standard:
Design modifications to computing devices in order to improve the ways users interact with the devices.
Descriptive Statement:
Computing devices can extend the abilities of humans, but design considerations are critical to make these devices useful. Students suggest modifications to the design of computing devices and describe how these modifications would improve usabilty. For example, students could create a design for the screen layout of a smartphone that is more usable by people with vision impairments or hand tremors. They might also design how to use the device as a scanner to convert text to speech. Alternatively, students could design modifications for a student ID card reader to increase usability by planning for scanner height, need of scanner device to be connected physically to the computer, robustness of scanner housing, and choice of use of RFID or line of sight scanners. (CA NGSS: MS-ETS1-1)
Design modifications to computing devices in order to improve the ways users interact with the devices.
Descriptive Statement:
Computing devices can extend the abilities of humans, but design considerations are critical to make these devices useful. Students suggest modifications to the design of computing devices and describe how these modifications would improve usabilty. For example, students could create a design for the screen layout of a smartphone that is more usable by people with vision impairments or hand tremors. They might also design how to use the device as a scanner to convert text to speech. Alternatively, students could design modifications for a student ID card reader to increase usability by planning for scanner height, need of scanner device to be connected physically to the computer, robustness of scanner housing, and choice of use of RFID or line of sight scanners. (CA NGSS: MS-ETS1-1)
Standard Identifier: 6-8.IC.22
Grade Range:
6–8
Concept:
Impacts of Computing
Subconcept:
Social Interactions
Practice(s):
Collaborating Around Computing, Creating Computational Artifacts (2.4, 5.2)
Standard:
Collaborate with many contributors when creating a computational artifact.
Descriptive Statement:
Users have diverse sets of experiences, needs, and wants. These need to be understood and integrated into the design of computational artifacts. Students use applications that enable crowdsourcing to gather services, ideas, or content from a large group of people. At this level, crowdsourcing can be done at the local level (e.g., classroom, school, or neighborhood) and/or global level (e.g., age-appropriate online communities). For example, a group of students could use electronic surveys to solicit input from their neighborhood regarding an important social or political issue. They could collaborate with a community artist to combine animations and create a digital community collage informing the public about various points of view regarding the topic. (VAPA Visual Art 8.5.2, 8.5.4)
Collaborate with many contributors when creating a computational artifact.
Descriptive Statement:
Users have diverse sets of experiences, needs, and wants. These need to be understood and integrated into the design of computational artifacts. Students use applications that enable crowdsourcing to gather services, ideas, or content from a large group of people. At this level, crowdsourcing can be done at the local level (e.g., classroom, school, or neighborhood) and/or global level (e.g., age-appropriate online communities). For example, a group of students could use electronic surveys to solicit input from their neighborhood regarding an important social or political issue. They could collaborate with a community artist to combine animations and create a digital community collage informing the public about various points of view regarding the topic. (VAPA Visual Art 8.5.2, 8.5.4)
Standard Identifier: 9-12.IC.27
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Social Interactions
Practice(s):
Collaborating Around Computing (2.4)
Standard:
Use collaboration tools and methods to increase connectivity with people of different cultures and careers.
Descriptive Statement:
Increased digital connectivity and communication between people across a variety of cultures and in differing professions has changed the collaborative nature of personal and professional interaction. Students identify, explain, and use appropriate collaborative tools. For example, students could compare ways that various technological collaboration tools could help a team become more cohesive and then choose one of these tools to manage their teamwork. Alternatively, students could use different collaborative tools and methods to solicit input from not only team members and classmates but also others, such as participants in online forums or local communities.
Use collaboration tools and methods to increase connectivity with people of different cultures and careers.
Descriptive Statement:
Increased digital connectivity and communication between people across a variety of cultures and in differing professions has changed the collaborative nature of personal and professional interaction. Students identify, explain, and use appropriate collaborative tools. For example, students could compare ways that various technological collaboration tools could help a team become more cohesive and then choose one of these tools to manage their teamwork. Alternatively, students could use different collaborative tools and methods to solicit input from not only team members and classmates but also others, such as participants in online forums or local communities.
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881