Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 51 - 55 of 55 Standards

Standard Identifier: 9-12S.AP.26

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Communicating About Computing (7.2)

Standard:
Compare multiple programming languages, and discuss how their features make them suitable for solving different types of problems.

Descriptive Statement:
Particular problems may be more effectively solved using some programming languages than other programming languages. Students provide a rationale for why a specific programming language is better suited for a solving a particular class of problem. For example, students could explain how a language with a large library base can make developing a web application easier. Alternatively, students could explain how languages that support particular programming paradigms (e.g., object-oriented or functional) can make implementation more aligned with design choices. Additionally, students could discuss how languages that implement garbage collection are good for simplicity of memory management, but may result in poor performance characteristics.

Standard Identifier: 9-12S.CS.1

Grade Range: 9–12 Specialty
Concept: Computing Systems
Subconcept: Devices
Practice(s): Developing and Using Abstractions, Communicating About Computing (4.4, 7.2)

Standard:
Illustrate ways computing systems implement logic through hardware components.

Descriptive Statement:
Computing systems use processors (e.g., a central processing unit or CPU) to execute program instructions. Processors are composed of components that implement the logical or computational operations required by the instructions. AND, OR, and NOT are examples of logic gates. Adders are examples of higher-leveled circuits built using low-level logic gates. Students illustrate how modern computing devices are made up of smaller and simpler components which implement the logic underlying the functionality of a computer processor. At this level, knowledge of how logic gates are constructed is not expected. For example, students could construct truth tables, draw logic circuit diagrams, or use an online logic circuit simulator. Students could explore the interaction of the CPU, RAM, and I/O by labeling a diagram of the von Neumann architecture. Alternatively, students could design higher-level circuits using low-level logic gates (e.g., adders).

Standard Identifier: 9-12S.IC.30

Grade Range: 9–12 Specialty
Concept: Impacts of Computing
Subconcept: Safety, Law, & Ethics
Practice(s): Communicating About Computing (7.2)

Standard:
Debate laws and regulations that impact the development and use of software.

Descriptive Statement:
Laws and regulations influence what software gets developed and how society benefits or does not. For example, students could debate the pros and cons of changes to regulations around net neutrality: Many believe that mandating that Internet service providers (ISPs) maintain net neutrality facilitates competition between Internet-based content providers and supports consumer choice, but others believe such regulations represent government overreach. Alternatively, students could debate the impacts of different copyright rules in various countries and impacts on economy, society, and culture: Long-lasting copyrights in the United States enable creators to profit from their works but also prevent works from entering the public domain where they can be freely used and adapted to create new works.

Standard Identifier: 9-12S.NI.5

Grade Range: 9–12 Specialty
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Creating Computational Artifacts (5.3)

Standard:
Develop solutions to security threats.

Descriptive Statement:
Designing and implementing cybersecurity measures requires knowledge of software, hardware, and human components and understanding tradeoffs. Students design solutions to security threats and compare tradeoffs of easier access and use against the costs of losing information and disrupting services. For example, students could refine a technology that allows users to use blank or weak passwords. Alternatively, students could implement a firewall or proxy protection between an organization's private local area network (LAN) and the public Internet. Additionally, students could find and close exploitable threats on an infected computer in order to protect information.

Standard Identifier: 9-12S.NI.6

Grade Range: 9–12 Specialty
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.3, 4.2)

Standard:
Analyze cryptographic techniques to model the secure transmission of information.

Descriptive Statement:
Cryptography is essential to many models of cybersecurity. Open standards help to ensure cryptographic security. Certificate Authorities (CAs) issue digital certificates that validate the ownership of encrypted keys used in secured communications across the Internet. Students encode and decode messages using encryption and decryption methods, and they should understand the different levels of complexity to hide or secure information. For example, students could analyze the relative designs of private key vs. public key encryption techniques and apply the best choice for a particular scenario. Alternatively, students could analyze the design of the Diffie-Helman algorithm to RSA (Rivest–Shamir–Adleman) and apply the best choice for a particular scenario. They could provide a cost-benefit analysis of runtime and ease of cracking for various encryption techniques which are commonly used to secure transmission of data over the Internet.

Showing 51 - 55 of 55 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881