Computer Science Standards
Results
Showing 21 - 30 of 33 Standards
Standard Identifier: 9-12.CS.2
Grade Range:
9–12
Concept:
Computing Systems
Subconcept:
Hardware & Software
Practice(s):
Developing and Using Abstractions (4.1)
Standard:
Compare levels of abstraction and interactions between application software, system software, and hardware.
Descriptive Statement:
At its most basic level, a computer is composed of physical hardware on which software runs. Multiple layers of software are built upon various layers of hardware. Layers manage interactions and complexity in the computing system. System software manages a computing device's resources so that software can interact with hardware. Application software communicates with the user and the system software to accomplish its purpose. Students compare and describe how application software, system software, and hardware interact. For example, students could compare how various levels of hardware and software interact when a picture is to be taken on a smartphone. Systems software provides low-level commands to operate the camera hardware, but the application software interacts with system software at a higher level by requesting a common image file format (e.g., .png) that the system software provides.
Compare levels of abstraction and interactions between application software, system software, and hardware.
Descriptive Statement:
At its most basic level, a computer is composed of physical hardware on which software runs. Multiple layers of software are built upon various layers of hardware. Layers manage interactions and complexity in the computing system. System software manages a computing device's resources so that software can interact with hardware. Application software communicates with the user and the system software to accomplish its purpose. Students compare and describe how application software, system software, and hardware interact. For example, students could compare how various levels of hardware and software interact when a picture is to be taken on a smartphone. Systems software provides low-level commands to operate the camera hardware, but the application software interacts with system software at a higher level by requesting a common image file format (e.g., .png) that the system software provides.
Standard Identifier: 9-12.DA.8
Grade Range:
9–12
Concept:
Data & Analysis
Subconcept:
Storage
Practice(s):
Developing and Using Abstractions (4.1)
Standard:
Translate between different representations of data abstractions of real-world phenomena, such as characters, numbers, and images.
Descriptive Statement:
Computers represent complex real-world concepts such as characters, numbers, and images through various abstractions. Students translate between these different levels of data representations. For example, students could convert an HTML (Hyper Text Markup Language) tag for red font into RGB (Red Green Blue), HEX (Hexadecimal Color Code), HSL (Hue Saturation Lightness), RGBA( Red Green Blue Alpha), or HSLA (Hue Saturation Lightness and Alpha) representations. Alternatively, students could convert the standard representation of a character such as ! into ASCII or Unicode.
Translate between different representations of data abstractions of real-world phenomena, such as characters, numbers, and images.
Descriptive Statement:
Computers represent complex real-world concepts such as characters, numbers, and images through various abstractions. Students translate between these different levels of data representations. For example, students could convert an HTML (Hyper Text Markup Language) tag for red font into RGB (Red Green Blue), HEX (Hexadecimal Color Code), HSL (Hue Saturation Lightness), RGBA( Red Green Blue Alpha), or HSLA (Hue Saturation Lightness and Alpha) representations. Alternatively, students could convert the standard representation of a character such as ! into ASCII or Unicode.
Standard Identifier: 9-12.DA.9
Grade Range:
9–12
Concept:
Data & Analysis
Subconcept:
Storage
Practice(s):
Recognizing and Defining Computational Problems (3.3)
Standard:
Describe tradeoffs associated with how data elements are organized and stored.
Descriptive Statement:
People make choices about how data elements are organized and where data is stored. These choices affect cost, speed, reliability, accessibility, privacy, and integrity. Students describe implications for a given data organziation or storage choice in light of a specific problem. For example, students might consider the cost, speed, reliability, accessibility, privacy, and integrity tradeoffs between storing photo data on a mobile device versus in the cloud. Alternatively, students might compare the tradeoffs between file size and image quality of various image file formats and how choice of format may be infuenced by the device on which it is to be accessed (e.g., smartphone, computer).
Describe tradeoffs associated with how data elements are organized and stored.
Descriptive Statement:
People make choices about how data elements are organized and where data is stored. These choices affect cost, speed, reliability, accessibility, privacy, and integrity. Students describe implications for a given data organziation or storage choice in light of a specific problem. For example, students might consider the cost, speed, reliability, accessibility, privacy, and integrity tradeoffs between storing photo data on a mobile device versus in the cloud. Alternatively, students might compare the tradeoffs between file size and image quality of various image file formats and how choice of format may be infuenced by the device on which it is to be accessed (e.g., smartphone, computer).
Standard Identifier: 9-12.IC.28
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.3)
Standard:
Explain the beneficial and harmful effects that intellectual property laws can have on innovation.
Descriptive Statement:
Laws and ethics govern aspects of computing such as privacy, data, property, information, and identity. Students explain the beneficial and harmful effects of intellectual property laws as they relate to potential innovations and governance. For example, students could explain how patents protect inventions but may limit innovation. Alternatively, students could explain how intellectual property laws requiring that artists be paid for use of their media might limit the choice of songs developers can use in their computational artifacts.
Explain the beneficial and harmful effects that intellectual property laws can have on innovation.
Descriptive Statement:
Laws and ethics govern aspects of computing such as privacy, data, property, information, and identity. Students explain the beneficial and harmful effects of intellectual property laws as they relate to potential innovations and governance. For example, students could explain how patents protect inventions but may limit innovation. Alternatively, students could explain how intellectual property laws requiring that artists be paid for use of their media might limit the choice of songs developers can use in their computational artifacts.
Standard Identifier: 9-12.IC.29
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.2)
Standard:
Explain the privacy concerns related to the collection and generation of data through automated processes.
Descriptive Statement:
Data can be collected and aggregated across millions of people, even when they are not actively engaging with or physically near the data collection devices. Students recognize automated and non-evident collection of information and the privacy concerns they raise for individuals. For example, students could explain the impact on an individual when a social media site's security settings allows for mining of account information even when the user is not online. Alternatively, students could discuss the impact on individuals of using surveillance video in a store to track customers. Additionally, students could discuss how road traffic can be monitored to change signals in real time to improve road efficiency without drivers being aware and discuss policies for retaining data that identifies drivers' cars and their behaviors.
Explain the privacy concerns related to the collection and generation of data through automated processes.
Descriptive Statement:
Data can be collected and aggregated across millions of people, even when they are not actively engaging with or physically near the data collection devices. Students recognize automated and non-evident collection of information and the privacy concerns they raise for individuals. For example, students could explain the impact on an individual when a social media site's security settings allows for mining of account information even when the user is not online. Alternatively, students could discuss the impact on individuals of using surveillance video in a store to track customers. Additionally, students could discuss how road traffic can be monitored to change signals in real time to improve road efficiency without drivers being aware and discuss policies for retaining data that identifies drivers' cars and their behaviors.
Standard Identifier: 9-12.IC.30
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.2)
Standard:
Evaluate the social and economic implications of privacy in the context of safety, law, or ethics.
Descriptive Statement:
Laws govern many aspects of computing, such as privacy, data, property, information, and identity. International differences in laws and ethics have implications for computing. Students make and justify claims about potential and/or actual privacy implications of policies, laws, or ethics and consider the associated tradeoffs, focusing on society and the economy. For example, students could explore the case of companies tracking online shopping behaviors in order to decide which products to target to consumers. Students could evaluate the ethical and legal dilemmas of collecting such data without consumer knowledge in order to profit companies. Alternatively, students could evaluate the implications of net neutrality laws on society's access to information and on the impacts to businesses of varying sizes.
Evaluate the social and economic implications of privacy in the context of safety, law, or ethics.
Descriptive Statement:
Laws govern many aspects of computing, such as privacy, data, property, information, and identity. International differences in laws and ethics have implications for computing. Students make and justify claims about potential and/or actual privacy implications of policies, laws, or ethics and consider the associated tradeoffs, focusing on society and the economy. For example, students could explore the case of companies tracking online shopping behaviors in order to decide which products to target to consumers. Students could evaluate the ethical and legal dilemmas of collecting such data without consumer knowledge in order to profit companies. Alternatively, students could evaluate the implications of net neutrality laws on society's access to information and on the impacts to businesses of varying sizes.
Standard Identifier: 9-12.NI.6
Grade Range:
9–12
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Communicating About Computing (7.2)
Standard:
Compare and contrast security measures to address various security threats.
Descriptive Statement:
Network security depends on a combination of hardware, software, and practices that control access to data and systems. The needs of users and the sensitivity of data determine the level of security implemented. Potential security problems, such as denial-of-service attacks, ransomware, viruses, worms, spyware, and phishing, present threats to sensitive data. Students compare and contrast different types of security measures based on factors such as efficiency, feasibility, ethical impacts, usability, and security. At this level, students are not expected to develop or implement the security measures that they discuss. For example, students could review case studies or current events in which governments or organizations experienced data leaks or data loss as a result of these types of attacks. Students could provide an analysis of actual security measures taken comparing to other security measure which may have led to different outcomes. Alternatively, students might discuss computer security policies in place at the local level that present a tradeoff between usability and security, such as a web filter that prevents access to many educational sites but keeps the campus network safe.
Compare and contrast security measures to address various security threats.
Descriptive Statement:
Network security depends on a combination of hardware, software, and practices that control access to data and systems. The needs of users and the sensitivity of data determine the level of security implemented. Potential security problems, such as denial-of-service attacks, ransomware, viruses, worms, spyware, and phishing, present threats to sensitive data. Students compare and contrast different types of security measures based on factors such as efficiency, feasibility, ethical impacts, usability, and security. At this level, students are not expected to develop or implement the security measures that they discuss. For example, students could review case studies or current events in which governments or organizations experienced data leaks or data loss as a result of these types of attacks. Students could provide an analysis of actual security measures taken comparing to other security measure which may have led to different outcomes. Alternatively, students might discuss computer security policies in place at the local level that present a tradeoff between usability and security, such as a web filter that prevents access to many educational sites but keeps the campus network safe.
Standard Identifier: 9-12.NI.7
Grade Range:
9–12
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.3, 4.4)
Standard:
Compare and contrast cryptographic techniques to model the secure transmission of information.
Descriptive Statement:
Cryptography is a technique for transforming information on a computer in such a way that it becomes unreadable by anyone except authorized parties. Cryptography is useful for supporting secure communication of data across networks. Examples of cryptographic methods include hashing, symmetric encryption/decryption (private key), and assymmetric encryption/decryption (public key/private key). Students use software to encode and decode messages using cryptographic methods. Students compare the costs and benefits of using various cryptographic methods. At this level, students are not expected to perform the mathematical calculations associated with encryption and decryption. For example, students could compare and contrast multiple examples of symmetric cryptographic techiques. Alternatively, students could compare and contrast symmetric and asymmetric cryptographic techniques in which they apply for a given scenario.
Compare and contrast cryptographic techniques to model the secure transmission of information.
Descriptive Statement:
Cryptography is a technique for transforming information on a computer in such a way that it becomes unreadable by anyone except authorized parties. Cryptography is useful for supporting secure communication of data across networks. Examples of cryptographic methods include hashing, symmetric encryption/decryption (private key), and assymmetric encryption/decryption (public key/private key). Students use software to encode and decode messages using cryptographic methods. Students compare the costs and benefits of using various cryptographic methods. At this level, students are not expected to perform the mathematical calculations associated with encryption and decryption. For example, students could compare and contrast multiple examples of symmetric cryptographic techiques. Alternatively, students could compare and contrast symmetric and asymmetric cryptographic techniques in which they apply for a given scenario.
Standard Identifier: 9-12S.CS.1
Grade Range:
9–12 Specialty
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Developing and Using Abstractions, Communicating About Computing (4.4, 7.2)
Standard:
Illustrate ways computing systems implement logic through hardware components.
Descriptive Statement:
Computing systems use processors (e.g., a central processing unit or CPU) to execute program instructions. Processors are composed of components that implement the logical or computational operations required by the instructions. AND, OR, and NOT are examples of logic gates. Adders are examples of higher-leveled circuits built using low-level logic gates. Students illustrate how modern computing devices are made up of smaller and simpler components which implement the logic underlying the functionality of a computer processor. At this level, knowledge of how logic gates are constructed is not expected. For example, students could construct truth tables, draw logic circuit diagrams, or use an online logic circuit simulator. Students could explore the interaction of the CPU, RAM, and I/O by labeling a diagram of the von Neumann architecture. Alternatively, students could design higher-level circuits using low-level logic gates (e.g., adders).
Illustrate ways computing systems implement logic through hardware components.
Descriptive Statement:
Computing systems use processors (e.g., a central processing unit or CPU) to execute program instructions. Processors are composed of components that implement the logical or computational operations required by the instructions. AND, OR, and NOT are examples of logic gates. Adders are examples of higher-leveled circuits built using low-level logic gates. Students illustrate how modern computing devices are made up of smaller and simpler components which implement the logic underlying the functionality of a computer processor. At this level, knowledge of how logic gates are constructed is not expected. For example, students could construct truth tables, draw logic circuit diagrams, or use an online logic circuit simulator. Students could explore the interaction of the CPU, RAM, and I/O by labeling a diagram of the von Neumann architecture. Alternatively, students could design higher-level circuits using low-level logic gates (e.g., adders).
Standard Identifier: 9-12S.CS.2
Grade Range:
9–12 Specialty
Concept:
Computing Systems
Subconcept:
Hardware & Software
Practice(s):
Communicating About Computing (7.2)
Standard:
Categorize and describe the different functions of operating system software.
Descriptive Statement:
Operating systems (OS) software is the code that manages the computer’s basic functions. Students describe at a high level the different functions of different components of operating system software. Examples of functions could include memory management, data storage/retrieval, processes management, and access control. For example, students could use monitoring tools including within an OS to inspect the services and functions running on a system and create an artifact to describe the activity that they observed (e.g., when a browser is running with many tabs open, memory usage is increased). They could also inspect and describe changes in the activity monitor that occur as different applications are executing (e.g., processor utilization increases when a new application is launched).
Categorize and describe the different functions of operating system software.
Descriptive Statement:
Operating systems (OS) software is the code that manages the computer’s basic functions. Students describe at a high level the different functions of different components of operating system software. Examples of functions could include memory management, data storage/retrieval, processes management, and access control. For example, students could use monitoring tools including within an OS to inspect the services and functions running on a system and create an artifact to describe the activity that they observed (e.g., when a browser is running with many tabs open, memory usage is increased). They could also inspect and describe changes in the activity monitor that occur as different applications are executing (e.g., processor utilization increases when a new application is launched).
Showing 21 - 30 of 33 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881