Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 1 - 10 of 11 Standards

Standard Identifier: K-2.AP.10

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.2, 4.4)

Standard:
Model daily processes by creating and following algorithms to complete tasks.

Descriptive Statement:
Algorithms are sequences of instructions that describe how to complete a specific task. Students create algorithms that reflect simple life tasks inside and outside of the classroom. For example, students could create algorithms to represent daily routines for getting ready for school, transitioning through center rotations, eating lunch, and putting away art materials. Students could then write a narrative sequence of events. (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3) Alternatively, students could create a game or a dance with a specific set of movements to reach an intentional goal or objective. (P.E K.2, 1.2, 2.2) Additionally, students could create a map of their neighborhood and give step-by-step directions of how they get to school. (HSS.K.4, 1.2, 2.2)

Standard Identifier: K-2.NI.6

Grade Range: K–2
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Create patterns to communicate a message.

Descriptive Statement:
Connecting devices to a network or the Internet provides great benefit, but care must be taken to protect devices and information from unauthorized access. Messages can be protected by using secret languages or codes. Patterns help to ensure that the intended recipient can decode the message. Students create a pattern that can be decoded and translated into a message. For example, students could use a table to associate each text character with a number. Then, they could select a combination of text characters and use mathematical functions (e.g., simple arithmetic operations) to transform the numbers associated with the characters into a secret message. Using inverse functions, a peer could translate the secret message back into its original form. (CA CCSS for Mathematics 2.OA.A.1, 2.OA.B.2) Alternatively, students could use icons or invented symbols to represent patterns of beat, rhythm, or pitch to decode a musical phrase. (VAPA Music K.1.1, 1.1.1, 2.1.1, 2.2.2)

Standard Identifier: 3-5.CS.2

Grade Range: 3–5
Concept: Computing Systems
Subconcept: Hardware & Software
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Demonstrate how computer hardware and software work together as a system to accomplish tasks.

Descriptive Statement:
Hardware and software are both needed to accomplish tasks with a computing device. Students create a model to illustrate ways in which hardware and software work as a system. Students could draw a model on paper or in a drawing program, program an animation to demonstrate it, or demonstrate it by acting this out in some way. At this level, a model should only include the basic elements of a computer system, such as input, output, processor, sensors, and storage. For example, students could create a diagram or flow chart to indicate how a keyboard, desktop computer, monitor, and word processing software interact with each other. The keyboard (hardware) detects a key press, which the operating system and word processing application (software) displays as a new character that has been inserted into the document and is visible through the monitor (hardware). Students could also create a model by acting out the interactions of these different hardware and software components. Alternatively, when describing that animals and people receive different types of information through their senses, process the information in their brain, and respond to the information in different ways, students could compare this to the interaction of how the information traveling through a computer from mouse to processor are similar to signals sent through the nervous system telling our brain about the world around us to prompt responses. (CA NGSS: 4-LS1-2)

Standard Identifier: 3-5.NI.6

Grade Range: 3–5
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Create patterns to protect information from unauthorized access.

Descriptive Statement:
Encryption is the process of converting information or data into a code, especially to prevent unauthorized access. At this level, students use patterns as a code for encryption, to protect information. Patterns should be decodable to the party for whom the message is intended, but difficult or impossible for those with unauthorized access. For example, students could create encrypted messages via flashing a flashlight in Morse code. Other students could decode this established language even if it wasn't meant for them. To model the idea of protecting data, students should create their own variations on or changes to Morse code. This ensures that when a member of that group flashes a message only other members of their group can decode it, even if other students in the room can see it. (CA NGSS: 4-PS4-3) Alternatively, students could engage in a CS Unplugged activity that models public key encryption: One student puts a paper containing a written secret in a box, locks it with a padlock, and hands the box to a second student. Student 2 puts on a second padlock and hands it back. Student 1 removes her lock and hands the box to student 2 again. Student 2 removes his lock, opens the box, and has access to the secret that student 1 sent him. Because the box always contained at least one lock while in transit, an outside party never had the opportunity to see the message and it is protected.

Standard Identifier: 6-8.AP.10

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Developing and Using Abstractions (4.1, 4.4)

Standard:
Use flowcharts and/or pseudocode to design and illustrate algorithms that solve complex problems.

Descriptive Statement:
Complex problems are problems that would be difficult for students to solve without breaking them down into multiple steps. Flowcharts and pseudocode are used to design and illustrate the breakdown of steps in an algorithm. Students design and illustrate algorithms using pseudocode and/or flowcharts that organize and sequence the breakdown of steps for solving complex problems. For example, students might use a flowchart to illustrate an algorithm that produces a recommendation for purchasing sneakers based on inputs such as size, colors, brand, comfort, and cost. Alternatively, students could write pseudocode to express an algorithm for suggesting their outfit for the day, based on inputs such as the weather, color preferences, and day of the week.

Standard Identifier: 6-8.NI.6

Grade Range: 6–8
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Apply multiple methods of information protection to model the secure transmission of information.

Descriptive Statement:
Digital information is protected using a variety of cryptographic techniques. Cryptography is essential to many models of cybersecurity. At its core, cryptography has a mathematical foundation. Cryptographic encryption can be as simple as letter substitution or as complicated as modern methods used to secure networks and the Internet. Students encode and decode messages using encryption methods, and explore different levels of complexity used to hide or secure information. For example, students could identify methods of secret communication used during the Revolutionary War (e.g., ciphers, secret codes, invisible ink, hidden letters) and then secure their own methods such as substitution ciphers or steganography (i.e., hiding messages inside a picture or other data) to compose a message from either the Continental Army or British Army. (HSS.8.1) Alternatively, students could explore functions and inverse functions for encryption and decryption and consider functions that are complex enough to keep data secure from their peers. (CA CCSS for Mathematics 8.F.1)

Standard Identifier: 9-12.AP.12

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.1)

Standard:
Design algorithms to solve computational problems using a combination of original and existing algorithms.

Descriptive Statement:
Knowledge of common algorithms improves how people develop software, secure data, and store information. Some algorithms may be easier to implement in a particular programming language, work faster, require less memory to store data, and be applicable in a wider variety of situations than other algorithms. Algorithms used to search and sort data are common in a variety of software applications. For example, students could design an algorithm to calculate and display various sports statistics and use common sorting or mathematical algorithms (e.g., average) in the design of the overall algorithm. Alternatively, students could design an algorithm to implement a game and use existing randomization algorithms to place pieces randomly in starting positions or to control the "roll" of a dice or selection of a "card" from a deck.

Standard Identifier: 9-12.CS.2

Grade Range: 9–12
Concept: Computing Systems
Subconcept: Hardware & Software
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Compare levels of abstraction and interactions between application software, system software, and hardware.

Descriptive Statement:
At its most basic level, a computer is composed of physical hardware on which software runs. Multiple layers of software are built upon various layers of hardware. Layers manage interactions and complexity in the computing system. System software manages a computing device's resources so that software can interact with hardware. Application software communicates with the user and the system software to accomplish its purpose. Students compare and describe how application software, system software, and hardware interact. For example, students could compare how various levels of hardware and software interact when a picture is to be taken on a smartphone. Systems software provides low-level commands to operate the camera hardware, but the application software interacts with system software at a higher level by requesting a common image file format (e.g., .png) that the system software provides.

Standard Identifier: 9-12.NI.7

Grade Range: 9–12
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.3, 4.4)

Standard:
Compare and contrast cryptographic techniques to model the secure transmission of information.

Descriptive Statement:
Cryptography is a technique for transforming information on a computer in such a way that it becomes unreadable by anyone except authorized parties. Cryptography is useful for supporting secure communication of data across networks. Examples of cryptographic methods include hashing, symmetric encryption/decryption (private key), and assymmetric encryption/decryption (public key/private key). Students use software to encode and decode messages using cryptographic methods. Students compare the costs and benefits of using various cryptographic methods. At this level, students are not expected to perform the mathematical calculations associated with encryption and decryption. For example, students could compare and contrast multiple examples of symmetric cryptographic techiques. Alternatively, students could compare and contrast symmetric and asymmetric cryptographic techniques in which they apply for a given scenario.

Standard Identifier: 9-12S.AP.12

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.2)

Standard:
Implement searching and sorting algorithms to solve computational problems.

Descriptive Statement:
One of the core uses of computers is to store, organize, and retrieve information when working with large amounts of data. Students create computational artifacts that use searching and/or sorting algorithms to retrieve, organize, or store information. Students do not need to select their algorithm based on efficiency. For example, students could write a script to sequence their classmates in order from youngest to oldest. Alternatively, students could write a program to find certain words within a text and report their location.

Showing 1 - 10 of 11 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881