Computer Science Standards
Results
Showing 11 - 14 of 14 Standards
Standard Identifier: 9-12.CS.3
Grade Range:
9–12
Concept:
Computing Systems
Subconcept:
Troubleshooting
Practice(s):
Testing and Refining Computational Artifacts (6.2)
Standard:
Develop guidelines that convey systematic troubleshooting strategies that others can use to identify and fix errors.
Descriptive Statement:
Troubleshooting complex problems involves the use of multiple sources when researching, evaluating, and implementing potential solutions. Troubleshooting also relies on experience, such as when people recognize that a problem is similar to one they have seen before and adapt solutions that have worked in the past. For example, students could create a list of troubleshooting strategies to debug network connectivity problems such as checking hardware and software status and settings, rebooting devices, and checking security settings. Alternatively, students could create troubleshooting guidelines for help desk employees based on commonly observed problems (e.g., problems connecting a new device to the computer, problems printing from a computer to a network printer).
Develop guidelines that convey systematic troubleshooting strategies that others can use to identify and fix errors.
Descriptive Statement:
Troubleshooting complex problems involves the use of multiple sources when researching, evaluating, and implementing potential solutions. Troubleshooting also relies on experience, such as when people recognize that a problem is similar to one they have seen before and adapt solutions that have worked in the past. For example, students could create a list of troubleshooting strategies to debug network connectivity problems such as checking hardware and software status and settings, rebooting devices, and checking security settings. Alternatively, students could create troubleshooting guidelines for help desk employees based on commonly observed problems (e.g., problems connecting a new device to the computer, problems printing from a computer to a network printer).
Standard Identifier: 9-12.NI.4
Grade Range:
9–12
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Developing and Using Abstractions (4.1)
Standard:
Describe issues that impact network functionality.
Descriptive Statement:
Many different organizations, including educational, governmental, private businesses, and private households rely on networks to function adequately in order to engage in online commerce and activity. Quality of Service (QoS) refers to the capability of a network to provide better service to selected network traffic over various technologies from the perspective of the consumer. Students define and discuss performance measures that impact network functionality, such as latency, bandwidth, throughput, jitter, and error rate. For example, students could use online network simulators to explore how performance measures impact network functionality and describe impacts when various changes in the network occur. Alternatively, students could describe how pauses in television interviews conducted over satellite telephones are impacted by networking factors such as latency and jitter.
Describe issues that impact network functionality.
Descriptive Statement:
Many different organizations, including educational, governmental, private businesses, and private households rely on networks to function adequately in order to engage in online commerce and activity. Quality of Service (QoS) refers to the capability of a network to provide better service to selected network traffic over various technologies from the perspective of the consumer. Students define and discuss performance measures that impact network functionality, such as latency, bandwidth, throughput, jitter, and error rate. For example, students could use online network simulators to explore how performance measures impact network functionality and describe impacts when various changes in the network occur. Alternatively, students could describe how pauses in television interviews conducted over satellite telephones are impacted by networking factors such as latency and jitter.
Standard Identifier: 9-12S.AP.12
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.2)
Standard:
Implement searching and sorting algorithms to solve computational problems.
Descriptive Statement:
One of the core uses of computers is to store, organize, and retrieve information when working with large amounts of data. Students create computational artifacts that use searching and/or sorting algorithms to retrieve, organize, or store information. Students do not need to select their algorithm based on efficiency. For example, students could write a script to sequence their classmates in order from youngest to oldest. Alternatively, students could write a program to find certain words within a text and report their location.
Implement searching and sorting algorithms to solve computational problems.
Descriptive Statement:
One of the core uses of computers is to store, organize, and retrieve information when working with large amounts of data. Students create computational artifacts that use searching and/or sorting algorithms to retrieve, organize, or store information. Students do not need to select their algorithm based on efficiency. For example, students could write a script to sequence their classmates in order from youngest to oldest. Alternatively, students could write a program to find certain words within a text and report their location.
Standard Identifier: 9-12S.NI.3
Grade Range:
9–12 Specialty
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Examine the scalability and reliability of networks, by describing the relationship between routers, switches, servers, topology, and addressing.
Descriptive Statement:
Choice of network topology is determined, in part, by how many devices can be supported and the character of communication needs between devices. Each device is assigned an address that uniquely identifies it on the network. Routers function by comparing addresses to determine how information on the network should reach its desgination. Switches compare addresses to determine which computers will receive information. Students explore and explain how network performance degrades when various factors affect the network. For example, students could use online network simulators to describe how network performance changes when the number of devices increases. Alternatively, students could visualize and describe changes to the distribution of network traffic when a router on the network fails.
Examine the scalability and reliability of networks, by describing the relationship between routers, switches, servers, topology, and addressing.
Descriptive Statement:
Choice of network topology is determined, in part, by how many devices can be supported and the character of communication needs between devices. Each device is assigned an address that uniquely identifies it on the network. Routers function by comparing addresses to determine how information on the network should reach its desgination. Switches compare addresses to determine which computers will receive information. Students explore and explain how network performance degrades when various factors affect the network. For example, students could use online network simulators to describe how network performance changes when the number of devices increases. Alternatively, students could visualize and describe changes to the distribution of network traffic when a router on the network fails.
Showing 11 - 14 of 14 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881