Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 1 - 8 of 8 Standards

Standard Identifier: K-2.CS.3

Grade Range: K–2
Concept: Computing Systems
Subconcept: Troubleshooting
Practice(s): Testing and Refining Computational Artifacts, Communicating About Computing (6.2, 7.2)

Standard:
Describe basic hardware and software problems using accurate terminology.

Descriptive Statement:
Problems with computing systems have different causes. Accurate description of the problem aids users in finding solutions. Students communicate a problem with accurate terminology (e.g., when an app or program is not working as expected, a device will not turn on, the sound does not work, etc.). Students at this level do not need to understand the causes of hardware and software problems. For example, students could sort hardware and software terms on a word wall, and refer to the word wall when describing problems using "I see..." statements (e.g., "I see the pointer on the screen is missing", "I see that the computer will not turn on"). (CA CCSS for ELA/Literacy L.K.5.A, L.1.5.A, SL K.5, SL1.5, SL 2.5) (Visual Arts Kinder 5.2) Alternatively, students could use appropriate terminology during collaborative conversations as they learn to debug, troubleshoot, collaborate, and think critically with technology. (CA CCSS for ELA/Literacy SL.K.1, SL.1.1, SL.2.1)

Standard Identifier: K-2.DA.7

Grade Range: K–2
Concept: Data & Analysis
Subconcept: Storage
Practice(s): Developing and Using Abstractions (4.2)

Standard:
Store, copy, search, retrieve, modify, and delete information using a computing device, and define the information stored as data.

Descriptive Statement:
Information from the real world can be stored and processed by a computing device. When stored on a computing device, it is referred to as data. Data can include images, text documents, audio files, and video files. Students store, copy, search, retrieve, modify, and delete information using a computing device and define the information stored as data. For example, students could produce a story using a computing device, storing it locally or remotely (e.g., in the cloud). They could then make a copy of the story for peer revision and editing. When the final copy of the story is complete, students delete any unnecessary files. They search for and retrieve data from a local or remote source, depending on where it was stored. (CA CCSS for ELA/Literacy W.K.6, W.K.5, W1.6, W.1.5, W.2.6, W.2.5) Alternatively, students could record their voices singing an age-appropriate song. They could store the data on a computing device, search for peers' audio files, retrieve their own files, and delete unnecesary takes. (VAPA Music K.2.2, 1.2.2, 2.2.2)

Standard Identifier: 3-5.DA.7

Grade Range: 3–5
Concept: Data & Analysis
Subconcept: Storage
Practice(s): Developing and Using Abstractions (4.2)

Standard:
Explain that the amount of space required to store data differs based on the type of data and/or level of detail.

Descriptive Statement:
All saved data requires space to store it, whether locally or not (e.g., on the cloud). Music, images, video, and text require different amounts of storage. Video will often require more storage and different format than music or images alone because video combines both. The level of detail represented by that data also affects storage requirements. For instance, two pictures of the same object can require different amounts of storage based upon their resolution, and a high-resolution photo could require more storage than a low-resolution video. Students select appropriate storage for their data. For example, students could create an image using a standard drawing app. They could save the image in different formats (e.g., .png, .jpg, .pdf) and compare file sizes. They should also notice that different file sizes can result in differences in quality or resolution (e.g., some pictures could be more pixelated while some could be sharper). Alternatively, in an unplugged activity, students could represent images by coloring in squares within a large grid. They could model how a larger grid requires more storage but also represents a clearer image (i.e., higher resolution).

Standard Identifier: 6-8.DA.7

Grade Range: 6–8
Concept: Data & Analysis
Subconcept: Storage
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Represent data in multiple ways.

Descriptive Statement:
Computers store data as sequences of 0s and 1s (bits). Software translates to and from this low-level representation to higher levels that are understandable by people. Furthermore, higher level data can be represented in multiple ways, such as the digital display of a color and its corresponding numeric RGB value, or a bar graph, a pie chart, and table representation of the same data in a spreadsheet. For example, students could use a color picker to explore the correspondence between the digital display or name of a color (high-level representations) and its RGB value or hex code (low-level representation). Alternatively, students could translate a word (high-level representation) into Morse code or its corresponding sequence of ASCII codes (low-level representation).

Standard Identifier: 6-8.IC.20

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Communicating About Computing (7.2)

Standard:
Compare tradeoffs associated with computing technologies that affect people's everyday activities and career options.

Descriptive Statement:
Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use computing technologies have tradeoffs. Students consider current events related to broad ideas, including privacy, communication, and automation. For example, students could compare and contrast the impacts of computing technologies with the impacts of other systems developed throughout history such as the Pony Express and US Postal System. (HSS.7.8.4) Alternatively, students could identify tradeoffs for both personal and professional uses of a variety of computing technologies. For instance, driverless cars can increase convenience and reduce accidents, but they may be susceptible to hacking. The emerging industry will reduce the number of taxi and shared-ride drivers, but may create more software engineering and cybersecurity jobs.

Standard Identifier: 9-12.DA.8

Grade Range: 9–12
Concept: Data & Analysis
Subconcept: Storage
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Translate between different representations of data abstractions of real-world phenomena, such as characters, numbers, and images.

Descriptive Statement:
Computers represent complex real-world concepts such as characters, numbers, and images through various abstractions. Students translate between these different levels of data representations. For example, students could convert an HTML (Hyper Text Markup Language) tag for red font into RGB (Red Green Blue), HEX (Hexadecimal Color Code), HSL (Hue Saturation Lightness), RGBA( Red Green Blue Alpha), or HSLA (Hue Saturation Lightness and Alpha) representations. Alternatively, students could convert the standard representation of a character such as ! into ASCII or Unicode.

Standard Identifier: 9-12.IC.26

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Communicating About Computing (7.2)

Standard:
Study, discuss, and think critically about the potential impacts and implications of emerging technologies on larger social, economic, and political structures, with evidence from credible sources.

Descriptive Statement:
For example, after studying the rise of artifical intelligence, students create a cause and effect chart to represent positive and negative impacts of this technology on society.

Standard Identifier: 9-12S.IC.28

Grade Range: 9–12 Specialty
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Communicating About Computing (7.2)

Standard:
Evaluate how computational innovations that have revolutionized aspects of our culture might evolve.

Descriptive Statement:
It is important to be able to evaluate current technologies and innovations and their potential for future impact on society. Students describe how a given computational innovation might change in the future and impacts these evolutions could have on society, economy, or culture. For example, students could consider ways in which computers may support education (or healthcare) in the future, or how developments in virtual reality might impact arts and entertainment. Alternatively, students could consider how autonomous vehicles will affect individuals' car ownership and car use habits as well as industries that employ human drivers (e.g., trucking, taxi service).

Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881