Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 1 - 10 of 17 Standards

Standard Identifier: K-2.AP.10

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.2, 4.4)

Standard:
Model daily processes by creating and following algorithms to complete tasks.

Descriptive Statement:
Algorithms are sequences of instructions that describe how to complete a specific task. Students create algorithms that reflect simple life tasks inside and outside of the classroom. For example, students could create algorithms to represent daily routines for getting ready for school, transitioning through center rotations, eating lunch, and putting away art materials. Students could then write a narrative sequence of events. (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3) Alternatively, students could create a game or a dance with a specific set of movements to reach an intentional goal or objective. (P.E K.2, 1.2, 2.2) Additionally, students could create a map of their neighborhood and give step-by-step directions of how they get to school. (HSS.K.4, 1.2, 2.2)

Standard Identifier: K-2.AP.11

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Variables
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Model the way programs store data.

Descriptive Statement:
Information in the real world can be represented in computer programs. Students model the digital storage of data by transforming real-world information into symbolic representations that include text, numbers, and images. For example, after identifying symbols on a map and explaining what they represent in the real world, students could create their own symbols and corresponding legend to represent items on a map of their classroom (HSS.K.4.3, 1.2.3, 2.2.2) Alternatively, students could invent symbols to represent beat and/or pitch. Students could then modify symbols within the notation and explain how the musical phrase changes. (VAPA Music K.1.1, 1.1.1, 2.1.1, 2.2.2)

Standard Identifier: K-2.CS.3

Grade Range: K–2
Concept: Computing Systems
Subconcept: Troubleshooting
Practice(s): Testing and Refining Computational Artifacts, Communicating About Computing (6.2, 7.2)

Standard:
Describe basic hardware and software problems using accurate terminology.

Descriptive Statement:
Problems with computing systems have different causes. Accurate description of the problem aids users in finding solutions. Students communicate a problem with accurate terminology (e.g., when an app or program is not working as expected, a device will not turn on, the sound does not work, etc.). Students at this level do not need to understand the causes of hardware and software problems. For example, students could sort hardware and software terms on a word wall, and refer to the word wall when describing problems using "I see..." statements (e.g., "I see the pointer on the screen is missing", "I see that the computer will not turn on"). (CA CCSS for ELA/Literacy L.K.5.A, L.1.5.A, SL K.5, SL1.5, SL 2.5) (Visual Arts Kinder 5.2) Alternatively, students could use appropriate terminology during collaborative conversations as they learn to debug, troubleshoot, collaborate, and think critically with technology. (CA CCSS for ELA/Literacy SL.K.1, SL.1.1, SL.2.1)

Standard Identifier: 3-5.AP.10

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Recognizing and Defining Computational Problems, Testing and Refining Computational Artifacts (3.3, 6.3)

Standard:
Compare and refine multiple algorithms for the same task and determine which is the most appropriate.

Descriptive Statement:
Different algorithms can achieve the same result, though sometimes one algorithm might be more appropriate for a specific solution. Students examine different ways to solve the same task and decide which would be the better solution for the specific scenario. For example, students could use a map and create multiple algorithms to model the early land and sea routes to and from European settlements in California. They could then compare and refine their algorithms to reflect faster travel times, shorter distances, or avoid specific characteristics, such as mountains, deserts, ocean currents, and wind patterns. (HSS.4.2.2) Alternatively, students could identify multiple algorithms for decomposing a fraction into a sum of fractions with the same denominator and record each decomposition with an equation (e.g., 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8). Students could then select the most efficient algorithm (e.g., fewest number of steps). (CA CCSS for Mathematics 4.NF.3b) Additionally, students could compare algorithms that describe how to get ready for school and modify them for supporting different goals including having time to care for a pet, being able to talk with a friend before classes start, or taking a longer route to school to accompany a younger sibling to their school first. Students could then write an opinion piece, justifying with reasons their selected algorithm is most appropriate. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)

Standard Identifier: 3-5.AP.11

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Variables
Practice(s): Creating Computational Artifacts (5.2)

Standard:
Create programs that use variables to store and modify data.

Descriptive Statement:
Variables are used to store and modify data. Students use variables in programs they create. At this level, students may need guidance in identifying when to create variables (i.e., performing the abstraction). For example, students could create a game to represent predators and prey in an ecosystem. They could declare a "score" variable, assign it to 0 at the start of the game, and add 1 (increment) the score each time the predator captures its prey. They could also declare a second "numberOfLives" variable, assign it to 3 at the start of the game, and subtract 1 (decrement) each time a prey is captured. They could program the game to end when "numberOfLives" equals 0. (CA NGSS: 5-LS2-1) (CA CCSS for Mathematics 5.OA.3) Alternatively, when students create programs to draw regular polygons, they could use variables to store the line size, line color, and/or side length. Students can extend learning by creatively combining a variety of polygons to create digital artwork, comparing and contrasting this to another work of art made by the use of different art tools and media, such as watercolor or tempera paints. (CA CCSS for Mathematics 3.G.1) (VAPA Visual Arts 3.1.4)

Standard Identifier: 3-5.CS.3

Grade Range: 3–5
Concept: Computing Systems
Subconcept: Troubleshooting
Practice(s): Testing and Refining Computational Artifacts (6.2)

Standard:
Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies.

Descriptive Statement:
Although computing systems vary, common troubleshooting strategies can be used across many different systems. Students use troubleshooting strategies to identify problems that could include a device not responding, lacking power, lacking a network connection, an app crashing, not playing sounds, or password entry not working. Students use and develop various solutions to address these problems. Solutions may include rebooting the device, checking for power, checking network availability, opening and closing an app, making sure speakers are turned on or headphones are plugged in, and making sure that the caps lock key is not on. For example, students could prepare for and participate in a collaborative discussion in which they identify and list computing system problems and then describe common successful fixes. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could write informative/explanatory texts, create a poster, or use another medium of communication to examine common troubleshooting strategies and convey these ideas and information clearly. (CA CCSS for ELA/Literacy W.3.2, W.4.2, W.5.2)

Standard Identifier: 6-8.AP.10

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Developing and Using Abstractions (4.1, 4.4)

Standard:
Use flowcharts and/or pseudocode to design and illustrate algorithms that solve complex problems.

Descriptive Statement:
Complex problems are problems that would be difficult for students to solve without breaking them down into multiple steps. Flowcharts and pseudocode are used to design and illustrate the breakdown of steps in an algorithm. Students design and illustrate algorithms using pseudocode and/or flowcharts that organize and sequence the breakdown of steps for solving complex problems. For example, students might use a flowchart to illustrate an algorithm that produces a recommendation for purchasing sneakers based on inputs such as size, colors, brand, comfort, and cost. Alternatively, students could write pseudocode to express an algorithm for suggesting their outfit for the day, based on inputs such as the weather, color preferences, and day of the week.

Standard Identifier: 6-8.AP.11

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Variables
Practice(s): Creating Computational Artifacts (5.1, 5.2)

Standard:
Create clearly named variables that store data, and perform operations on their contents.

Descriptive Statement:
A variable is a container for data, and the name used for accessing the variable is called the identifier. Students declare, initialize, and update variables for storing different types of program data (e.g., text, integers) using names and naming conventions (e.g. camel case) that clearly convey the purpose of the variable, facilitate debugging, and improve readability. For example, students could program a quiz game with a score variable (e.g. quizScore) that is initially set to zero and increases by increments of one each time the user answers a quiz question correctly and decreases by increments of one each time a user answers a quiz question incorrectly, resulting in a score that is either a positive or negative integer. (CA CCSS for Mathematics 6.NS.5) Alternatively, students could write a program that prompts the user for their name, stores the user's response in a variable (e.g. userName), and uses this variable to greet the user by name.

Standard Identifier: 6-8.CS.3

Grade Range: 6–8
Concept: Computing Systems
Subconcept: Troubleshooting
Practice(s): Testing and Refining Computational Artifacts (6.2)

Standard:
Systematically apply troubleshooting strategies to identify and resolve hardware and software problems in computing systems.

Descriptive Statement:
When problems occur within computing systems, it is important to take a structured, step-by-step approach to effectively solve the problem and ensure that potential solutions are not overlooked. Examples of troubleshooting strategies include following a troubleshooting flow diagram, making changes to software to see if hardware will work, checking connections and settings, and swapping in working components. Since a computing device may interact with interconnected devices within a system, problems may not be due to the specific computing device itself but to devices connected to it. For example, students could work through a checklist of solutions for connectivity problems in a lab of computers connected wirelessly or through physical cables. They could also search for technical information online and engage in technical reading to create troubleshooting documents that they then apply. (CA CCSS for ELA/Literacy RST.6-8.10) Alternatively, students could explore and utilize operating system tools to reset a computer's default language to English. Additionally, students could swap out an externally-controlled sensor giving fluctuating readings with a new sensor to check whether there is a hardware problem.

Standard Identifier: 9-12.AP.12

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.1)

Standard:
Design algorithms to solve computational problems using a combination of original and existing algorithms.

Descriptive Statement:
Knowledge of common algorithms improves how people develop software, secure data, and store information. Some algorithms may be easier to implement in a particular programming language, work faster, require less memory to store data, and be applicable in a wider variety of situations than other algorithms. Algorithms used to search and sort data are common in a variety of software applications. For example, students could design an algorithm to calculate and display various sports statistics and use common sorting or mathematical algorithms (e.g., average) in the design of the overall algorithm. Alternatively, students could design an algorithm to implement a game and use existing randomization algorithms to place pieces randomly in starting positions or to control the "roll" of a dice or selection of a "card" from a deck.

Showing 1 - 10 of 17 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881