Computer Science Standards
Remove this criterion from the search
Add a Subconcept
Remove this criterion from the search
Control
Remove this criterion from the search
Culture
Remove this criterion from the search
Cybersecurity
Remove this criterion from the search
Inference & Models
Remove this criterion from the search
Modularity
Remove this criterion from the search
Troubleshooting
Results
Showing 21 - 30 of 47 Standards
Standard Identifier: 6-8.DA.9
Grade Range:
6–8
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Developing and Using Abstractions, Testing and Refining Computational Artifacts (4.4, 6.1)
Standard:
Test and analyze the effects of changing variables while using computational models.
Descriptive Statement:
Variables within a computational model may be changed, in order to alter a computer simulation or to more accurately represent how various data is related. Students interact with a given model, make changes to identified model variables, and observe and reflect upon the results. For example, students could test a program that makes a robot move on a track by making changes to variables (e.g., height and angle of track, size and mass of the robot) and discussing how these changes affect how far the robot travels. (CA NGSS: MS-PS2-2) Alternatively, students could test a game simulation and change variables (e.g., skill of simulated players, nature of opening moves) and analyze how these changes affect who wins the game. (CA NGSS: MS-ETS1-3) Additionally, students could modify a model for predicting the likely color of the next pick from a bag of colored candy and analyze the effects of changing variables representing the common color ratios in a typical bag of candy. (CA CCSS for Mathematics 7.SP.7, 8.SP.4)
Test and analyze the effects of changing variables while using computational models.
Descriptive Statement:
Variables within a computational model may be changed, in order to alter a computer simulation or to more accurately represent how various data is related. Students interact with a given model, make changes to identified model variables, and observe and reflect upon the results. For example, students could test a program that makes a robot move on a track by making changes to variables (e.g., height and angle of track, size and mass of the robot) and discussing how these changes affect how far the robot travels. (CA NGSS: MS-PS2-2) Alternatively, students could test a game simulation and change variables (e.g., skill of simulated players, nature of opening moves) and analyze how these changes affect who wins the game. (CA NGSS: MS-ETS1-3) Additionally, students could modify a model for predicting the likely color of the next pick from a bag of colored candy and analyze the effects of changing variables representing the common color ratios in a typical bag of candy. (CA CCSS for Mathematics 7.SP.7, 8.SP.4)
Standard Identifier: 6-8.IC.20
Grade Range:
6–8
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Communicating About Computing (7.2)
Standard:
Compare tradeoffs associated with computing technologies that affect people's everyday activities and career options.
Descriptive Statement:
Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use computing technologies have tradeoffs. Students consider current events related to broad ideas, including privacy, communication, and automation. For example, students could compare and contrast the impacts of computing technologies with the impacts of other systems developed throughout history such as the Pony Express and US Postal System. (HSS.7.8.4) Alternatively, students could identify tradeoffs for both personal and professional uses of a variety of computing technologies. For instance, driverless cars can increase convenience and reduce accidents, but they may be susceptible to hacking. The emerging industry will reduce the number of taxi and shared-ride drivers, but may create more software engineering and cybersecurity jobs.
Compare tradeoffs associated with computing technologies that affect people's everyday activities and career options.
Descriptive Statement:
Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use computing technologies have tradeoffs. Students consider current events related to broad ideas, including privacy, communication, and automation. For example, students could compare and contrast the impacts of computing technologies with the impacts of other systems developed throughout history such as the Pony Express and US Postal System. (HSS.7.8.4) Alternatively, students could identify tradeoffs for both personal and professional uses of a variety of computing technologies. For instance, driverless cars can increase convenience and reduce accidents, but they may be susceptible to hacking. The emerging industry will reduce the number of taxi and shared-ride drivers, but may create more software engineering and cybersecurity jobs.
Standard Identifier: 6-8.IC.21
Grade Range:
6–8
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Fostering an Inclusive Computing Culture (1.2)
Standard:
Discuss issues of bias and accessibility in the design of existing technologies.
Descriptive Statement:
Computing technologies should support users of many backgrounds and abilities. In order to maximize accessiblity, these differences need to be addressed by examining diverse populations. With the teacher's guidance, students test and discuss the usability of various technology tools, such as apps, games, and devices. For example, students could discuss the impacts of facial recognition software that works better for lighter skin tones and recognize that the software was likely developed with a homogeneous testing group. Students could then discuss how accessibility could be improved by sampling a more diverse population. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1)
Discuss issues of bias and accessibility in the design of existing technologies.
Descriptive Statement:
Computing technologies should support users of many backgrounds and abilities. In order to maximize accessiblity, these differences need to be addressed by examining diverse populations. With the teacher's guidance, students test and discuss the usability of various technology tools, such as apps, games, and devices. For example, students could discuss the impacts of facial recognition software that works better for lighter skin tones and recognize that the software was likely developed with a homogeneous testing group. Students could then discuss how accessibility could be improved by sampling a more diverse population. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1)
Standard Identifier: 6-8.NI.5
Grade Range:
6–8
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Recognizing and Defining Computational Problems (3.1, 3.3)
Standard:
Explain potential security threats and security measures to mitigate threats.
Descriptive Statement:
Cybersecurity is an important field of study and it is valuable for students to understand the need for protecting sensitive data. Students identify multiple methods for protecting data and articulate the value and appropriateness for each method. Students are not expected to implement or explain the implementation of such technologies. For example, students could explain the importance of keeping passwords hidden, setting secure router administrator passwords, erasing a storage device before it is reused, and using firewalls to restrict access to private networks. Alternatively, students could explain the importance of two-factor authentication and HTTPS connections to ensure secure data transmission.
Explain potential security threats and security measures to mitigate threats.
Descriptive Statement:
Cybersecurity is an important field of study and it is valuable for students to understand the need for protecting sensitive data. Students identify multiple methods for protecting data and articulate the value and appropriateness for each method. Students are not expected to implement or explain the implementation of such technologies. For example, students could explain the importance of keeping passwords hidden, setting secure router administrator passwords, erasing a storage device before it is reused, and using firewalls to restrict access to private networks. Alternatively, students could explain the importance of two-factor authentication and HTTPS connections to ensure secure data transmission.
Standard Identifier: 6-8.NI.6
Grade Range:
6–8
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Apply multiple methods of information protection to model the secure transmission of information.
Descriptive Statement:
Digital information is protected using a variety of cryptographic techniques. Cryptography is essential to many models of cybersecurity. At its core, cryptography has a mathematical foundation. Cryptographic encryption can be as simple as letter substitution or as complicated as modern methods used to secure networks and the Internet. Students encode and decode messages using encryption methods, and explore different levels of complexity used to hide or secure information. For example, students could identify methods of secret communication used during the Revolutionary War (e.g., ciphers, secret codes, invisible ink, hidden letters) and then secure their own methods such as substitution ciphers or steganography (i.e., hiding messages inside a picture or other data) to compose a message from either the Continental Army or British Army. (HSS.8.1) Alternatively, students could explore functions and inverse functions for encryption and decryption and consider functions that are complex enough to keep data secure from their peers. (CA CCSS for Mathematics 8.F.1)
Apply multiple methods of information protection to model the secure transmission of information.
Descriptive Statement:
Digital information is protected using a variety of cryptographic techniques. Cryptography is essential to many models of cybersecurity. At its core, cryptography has a mathematical foundation. Cryptographic encryption can be as simple as letter substitution or as complicated as modern methods used to secure networks and the Internet. Students encode and decode messages using encryption methods, and explore different levels of complexity used to hide or secure information. For example, students could identify methods of secret communication used during the Revolutionary War (e.g., ciphers, secret codes, invisible ink, hidden letters) and then secure their own methods such as substitution ciphers or steganography (i.e., hiding messages inside a picture or other data) to compose a message from either the Continental Army or British Army. (HSS.8.1) Alternatively, students could explore functions and inverse functions for encryption and decryption and consider functions that are complex enough to keep data secure from their peers. (CA CCSS for Mathematics 8.F.1)
Standard Identifier: 9-12.AP.14
Grade Range:
9–12
Concept:
Algorithms & Programming
Subconcept:
Control
Practice(s):
Creating Computational Artifacts (5.2)
Standard:
Justify the selection of specific control structures by identifying tradeoffs associated with implementation, readability, and performance.
Descriptive Statement:
The selection of control structures in a given programming language impacts readability and performance. Readability refers to how clear the program is to other programmers and can be improved through documentation. Control structures at this level may include, for example, conditional statements, loops, event handlers, and recursion. Students justify control structure selection and tradeoffs in the process of creating their own computational artifacts. The discussion of performance is limited to a theoretical understanding of execution time and storage requirements; a quantitative analysis is not expected. For example, students could compare the readability and program performance of iterative and recursive implementations of procedures that calculate the Fibonacci sequence. Alternatively, students could compare the readability and performance tradeoffs of multiple if statements versus a nested if statement.
Justify the selection of specific control structures by identifying tradeoffs associated with implementation, readability, and performance.
Descriptive Statement:
The selection of control structures in a given programming language impacts readability and performance. Readability refers to how clear the program is to other programmers and can be improved through documentation. Control structures at this level may include, for example, conditional statements, loops, event handlers, and recursion. Students justify control structure selection and tradeoffs in the process of creating their own computational artifacts. The discussion of performance is limited to a theoretical understanding of execution time and storage requirements; a quantitative analysis is not expected. For example, students could compare the readability and program performance of iterative and recursive implementations of procedures that calculate the Fibonacci sequence. Alternatively, students could compare the readability and performance tradeoffs of multiple if statements versus a nested if statement.
Standard Identifier: 9-12.AP.15
Grade Range:
9–12
Concept:
Algorithms & Programming
Subconcept:
Control
Practice(s):
Creating Computational Artifacts (5.1, 5.2, 5.3)
Standard:
Iteratively design and develop computational artifacts for practical intent, personal expression, or to address a societal issue by using events to initiate instructions.
Descriptive Statement:
In this context, relevant computational artifacts can include programs, mobile apps, or web apps. Events can be user-initiated, such as a button press, or system-initiated, such as a timer firing. For example, students might create a tool for drawing on a canvas by first implementing a button to set the color of the pen. Alternatively, students might create a game where many events control instructions executed (e.g., when a score climbs above a threshold, a congratulatory sound is played; when a user clicks on an object, the object is loaded into a basket; when a user clicks on an arrow key, the player object is moved around the screen).
Iteratively design and develop computational artifacts for practical intent, personal expression, or to address a societal issue by using events to initiate instructions.
Descriptive Statement:
In this context, relevant computational artifacts can include programs, mobile apps, or web apps. Events can be user-initiated, such as a button press, or system-initiated, such as a timer firing. For example, students might create a tool for drawing on a canvas by first implementing a button to set the color of the pen. Alternatively, students might create a game where many events control instructions executed (e.g., when a score climbs above a threshold, a congratulatory sound is played; when a user clicks on an object, the object is loaded into a basket; when a user clicks on an arrow key, the player object is moved around the screen).
Standard Identifier: 9-12.AP.16
Grade Range:
9–12
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Recognizing and Defining Computational Problems (3.2)
Standard:
Decompose problems into smaller subproblems through systematic analysis, using constructs such as procedures, modules, and/or classes.
Descriptive Statement:
Decomposition enables solutions to complex problems to be designed and implemented as more manageable subproblems. Students decompose a given problem into subproblems that can be solved using existing functionalities, or new functionalities that they design and implement. For example, students could design a program for supporting soccer coaches in analyzing their teams' statistics. They decompose the problem in terms of managing input, analysis, and output. They decompose the data organization by designing what data will be stored per player, per game, and per team. Team players may be stored as a collection. Data per team player may include: number of shots, misses, saves, assists, penalty kicks, blocks, and corner kicks. Students design methods for supporting various statistical analyses and display options. Students design output formats for individual players or coaches.
Decompose problems into smaller subproblems through systematic analysis, using constructs such as procedures, modules, and/or classes.
Descriptive Statement:
Decomposition enables solutions to complex problems to be designed and implemented as more manageable subproblems. Students decompose a given problem into subproblems that can be solved using existing functionalities, or new functionalities that they design and implement. For example, students could design a program for supporting soccer coaches in analyzing their teams' statistics. They decompose the problem in terms of managing input, analysis, and output. They decompose the data organization by designing what data will be stored per player, per game, and per team. Team players may be stored as a collection. Data per team player may include: number of shots, misses, saves, assists, penalty kicks, blocks, and corner kicks. Students design methods for supporting various statistical analyses and display options. Students design output formats for individual players or coaches.
Standard Identifier: 9-12.AP.17
Grade Range:
9–12
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts (4.3, 5.2)
Standard:
Create computational artifacts using modular design.
Descriptive Statement:
Computational artifacts are created by combining and modifying existing computational artifacts and/or by developing new artifacts. To reduce complexity, large programs can be designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. Students should create computational artifacts with interacting procedures, modules, and/or libraries. For example, students could incorporate a physics library into an animation of bouncing balls. Alternatively, students could integrate open-source JavaScript libraries to expand the functionality of a web application. Additionally, students could create their own game to teach Spanish vocabulary words using their own modular design (e.g., including methods to: control scoring, manage wordlists, manage access to different game levels, take input from the user, etc.).
Create computational artifacts using modular design.
Descriptive Statement:
Computational artifacts are created by combining and modifying existing computational artifacts and/or by developing new artifacts. To reduce complexity, large programs can be designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. Students should create computational artifacts with interacting procedures, modules, and/or libraries. For example, students could incorporate a physics library into an animation of bouncing balls. Alternatively, students could integrate open-source JavaScript libraries to expand the functionality of a web application. Additionally, students could create their own game to teach Spanish vocabulary words using their own modular design (e.g., including methods to: control scoring, manage wordlists, manage access to different game levels, take input from the user, etc.).
Standard Identifier: 9-12.CS.3
Grade Range:
9–12
Concept:
Computing Systems
Subconcept:
Troubleshooting
Practice(s):
Testing and Refining Computational Artifacts (6.2)
Standard:
Develop guidelines that convey systematic troubleshooting strategies that others can use to identify and fix errors.
Descriptive Statement:
Troubleshooting complex problems involves the use of multiple sources when researching, evaluating, and implementing potential solutions. Troubleshooting also relies on experience, such as when people recognize that a problem is similar to one they have seen before and adapt solutions that have worked in the past. For example, students could create a list of troubleshooting strategies to debug network connectivity problems such as checking hardware and software status and settings, rebooting devices, and checking security settings. Alternatively, students could create troubleshooting guidelines for help desk employees based on commonly observed problems (e.g., problems connecting a new device to the computer, problems printing from a computer to a network printer).
Develop guidelines that convey systematic troubleshooting strategies that others can use to identify and fix errors.
Descriptive Statement:
Troubleshooting complex problems involves the use of multiple sources when researching, evaluating, and implementing potential solutions. Troubleshooting also relies on experience, such as when people recognize that a problem is similar to one they have seen before and adapt solutions that have worked in the past. For example, students could create a list of troubleshooting strategies to debug network connectivity problems such as checking hardware and software status and settings, rebooting devices, and checking security settings. Alternatively, students could create troubleshooting guidelines for help desk employees based on commonly observed problems (e.g., problems connecting a new device to the computer, problems printing from a computer to a network printer).
Showing 21 - 30 of 47 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881