Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 11 - 15 of 15 Standards

Standard Identifier: 9-12.IC.30

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Safety, Law, & Ethics
Practice(s): Communicating About Computing (7.2)

Standard:
Evaluate the social and economic implications of privacy in the context of safety, law, or ethics.

Descriptive Statement:
Laws govern many aspects of computing, such as privacy, data, property, information, and identity. International differences in laws and ethics have implications for computing. Students make and justify claims about potential and/or actual privacy implications of policies, laws, or ethics and consider the associated tradeoffs, focusing on society and the economy. For example, students could explore the case of companies tracking online shopping behaviors in order to decide which products to target to consumers. Students could evaluate the ethical and legal dilemmas of collecting such data without consumer knowledge in order to profit companies. Alternatively, students could evaluate the implications of net neutrality laws on society's access to information and on the impacts to businesses of varying sizes.

Standard Identifier: 9-12.NI.6

Grade Range: 9–12
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Communicating About Computing (7.2)

Standard:
Compare and contrast security measures to address various security threats.

Descriptive Statement:
Network security depends on a combination of hardware, software, and practices that control access to data and systems. The needs of users and the sensitivity of data determine the level of security implemented. Potential security problems, such as denial-of-service attacks, ransomware, viruses, worms, spyware, and phishing, present threats to sensitive data. Students compare and contrast different types of security measures based on factors such as efficiency, feasibility, ethical impacts, usability, and security. At this level, students are not expected to develop or implement the security measures that they discuss. For example, students could review case studies or current events in which governments or organizations experienced data leaks or data loss as a result of these types of attacks. Students could provide an analysis of actual security measures taken comparing to other security measure which may have led to different outcomes. Alternatively, students might discuss computer security policies in place at the local level that present a tradeoff between usability and security, such as a web filter that prevents access to many educational sites but keeps the campus network safe.

Standard Identifier: 9-12S.CS.2

Grade Range: 9–12 Specialty
Concept: Computing Systems
Subconcept: Hardware & Software
Practice(s): Communicating About Computing (7.2)

Standard:
Categorize and describe the different functions of operating system software.

Descriptive Statement:
Operating systems (OS) software is the code that manages the computer’s basic functions. Students describe at a high level the different functions of different components of operating system software. Examples of functions could include memory management, data storage/retrieval, processes management, and access control. For example, students could use monitoring tools including within an OS to inspect the services and functions running on a system and create an artifact to describe the activity that they observed (e.g., when a browser is running with many tabs open, memory usage is increased). They could also inspect and describe changes in the activity monitor that occur as different applications are executing (e.g., processor utilization increases when a new application is launched).

Standard Identifier: 9-12S.IC.28

Grade Range: 9–12 Specialty
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Communicating About Computing (7.2)

Standard:
Evaluate how computational innovations that have revolutionized aspects of our culture might evolve.

Descriptive Statement:
It is important to be able to evaluate current technologies and innovations and their potential for future impact on society. Students describe how a given computational innovation might change in the future and impacts these evolutions could have on society, economy, or culture. For example, students could consider ways in which computers may support education (or healthcare) in the future, or how developments in virtual reality might impact arts and entertainment. Alternatively, students could consider how autonomous vehicles will affect individuals' car ownership and car use habits as well as industries that employ human drivers (e.g., trucking, taxi service).

Standard Identifier: 9-12S.IC.30

Grade Range: 9–12 Specialty
Concept: Impacts of Computing
Subconcept: Safety, Law, & Ethics
Practice(s): Communicating About Computing (7.2)

Standard:
Debate laws and regulations that impact the development and use of software.

Descriptive Statement:
Laws and regulations influence what software gets developed and how society benefits or does not. For example, students could debate the pros and cons of changes to regulations around net neutrality: Many believe that mandating that Internet service providers (ISPs) maintain net neutrality facilitates competition between Internet-based content providers and supports consumer choice, but others believe such regulations represent government overreach. Alternatively, students could debate the impacts of different copyright rules in various countries and impacts on economy, society, and culture: Long-lasting copyrights in the United States enable creators to profit from their works but also prevent works from entering the public domain where they can be freely used and adapted to create new works.

Showing 11 - 15 of 15 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881