Computer Science Standards
Results
Showing 21 - 26 of 26 Standards
Standard Identifier: 9-12S.AP.12
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.2)
Standard:
Implement searching and sorting algorithms to solve computational problems.
Descriptive Statement:
One of the core uses of computers is to store, organize, and retrieve information when working with large amounts of data. Students create computational artifacts that use searching and/or sorting algorithms to retrieve, organize, or store information. Students do not need to select their algorithm based on efficiency. For example, students could write a script to sequence their classmates in order from youngest to oldest. Alternatively, students could write a program to find certain words within a text and report their location.
Implement searching and sorting algorithms to solve computational problems.
Descriptive Statement:
One of the core uses of computers is to store, organize, and retrieve information when working with large amounts of data. Students create computational artifacts that use searching and/or sorting algorithms to retrieve, organize, or store information. Students do not need to select their algorithm based on efficiency. For example, students could write a script to sequence their classmates in order from youngest to oldest. Alternatively, students could write a program to find certain words within a text and report their location.
Standard Identifier: 9-12S.AP.13
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Recognizing and Defining Computational Problems (3.3)
Standard:
Evaluate algorithms in terms of their efficiency.
Descriptive Statement:
Algorithms that perform the same task can be implemented in different ways, which take different amounts of time to run on a given input set. Algorithms are commonly evaluated using asymptotic analysis (i.e., “Big O”) which involves exploration of behavior when the input set grows very large. Students classify algorithms by the most common time classes (e.g., log n, linear, n log n, and quadratic or higher). For example, students could read a given algorithm, identify the control constructs, and in conjunction with input size, identify the efficiency class of the algorithm.
Evaluate algorithms in terms of their efficiency.
Descriptive Statement:
Algorithms that perform the same task can be implemented in different ways, which take different amounts of time to run on a given input set. Algorithms are commonly evaluated using asymptotic analysis (i.e., “Big O”) which involves exploration of behavior when the input set grows very large. Students classify algorithms by the most common time classes (e.g., log n, linear, n log n, and quadratic or higher). For example, students could read a given algorithm, identify the control constructs, and in conjunction with input size, identify the efficiency class of the algorithm.
Standard Identifier: 9-12S.AP.14
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Variables
Practice(s):
Developing and Using Abstractions (4.2)
Standard:
Compare and contrast fundamental data structures and their uses.
Descriptive Statement:
Data structures are designed to provide different ways of storing and manipulating data sets to optimize various aspects of storage or runtime performance. Choice of data structures is made based on expected data characteristics and expected program functions. Students = compare and contrast how basic functions (e.g.., insertion, deletion, and modification) would differ for common data structures including lists, arrays, stacks, and queues. For example, students could draw a diagram of how different data structures change when items are added, deleted, or modified. They could explain tradeoffs in storage and efficiency issues. Alternatively, when presented with a description of a program and the functions it would be most likely to be running, students could list pros and cons for a specific data structure use in that scenario.
Compare and contrast fundamental data structures and their uses.
Descriptive Statement:
Data structures are designed to provide different ways of storing and manipulating data sets to optimize various aspects of storage or runtime performance. Choice of data structures is made based on expected data characteristics and expected program functions. Students = compare and contrast how basic functions (e.g.., insertion, deletion, and modification) would differ for common data structures including lists, arrays, stacks, and queues. For example, students could draw a diagram of how different data structures change when items are added, deleted, or modified. They could explain tradeoffs in storage and efficiency issues. Alternatively, when presented with a description of a program and the functions it would be most likely to be running, students could list pros and cons for a specific data structure use in that scenario.
Standard Identifier: 9-12S.AP.15
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Control
Practice(s):
Recognizing and Defining Computational Problems, Communicating About Computing (3.2, 7.2)
Standard:
Demonstrate the flow of execution of a recursive algorithm.
Descriptive Statement:
Recursion is a powerful problem-solving approach where the problem solution is built on solutions of smaller instances of the same problem. A base case, which returns a result without referencing itself, must be defined, otherwise infinite recursion will occur. Students represent a sequence of calls to a recursive algorithm and show how the process resolves to a solution. For example, students could draw a diagram to illustrate flow of execution by keeping track of parameter and returned values for each recursive call. Alternatively, students could create a video showing the passing of arguments as the recursive algorithm runs.
Demonstrate the flow of execution of a recursive algorithm.
Descriptive Statement:
Recursion is a powerful problem-solving approach where the problem solution is built on solutions of smaller instances of the same problem. A base case, which returns a result without referencing itself, must be defined, otherwise infinite recursion will occur. Students represent a sequence of calls to a recursive algorithm and show how the process resolves to a solution. For example, students could draw a diagram to illustrate flow of execution by keeping track of parameter and returned values for each recursive call. Alternatively, students could create a video showing the passing of arguments as the recursive algorithm runs.
Standard Identifier: 9-12S.NI.3
Grade Range:
9–12 Specialty
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Examine the scalability and reliability of networks, by describing the relationship between routers, switches, servers, topology, and addressing.
Descriptive Statement:
Choice of network topology is determined, in part, by how many devices can be supported and the character of communication needs between devices. Each device is assigned an address that uniquely identifies it on the network. Routers function by comparing addresses to determine how information on the network should reach its desgination. Switches compare addresses to determine which computers will receive information. Students explore and explain how network performance degrades when various factors affect the network. For example, students could use online network simulators to describe how network performance changes when the number of devices increases. Alternatively, students could visualize and describe changes to the distribution of network traffic when a router on the network fails.
Examine the scalability and reliability of networks, by describing the relationship between routers, switches, servers, topology, and addressing.
Descriptive Statement:
Choice of network topology is determined, in part, by how many devices can be supported and the character of communication needs between devices. Each device is assigned an address that uniquely identifies it on the network. Routers function by comparing addresses to determine how information on the network should reach its desgination. Switches compare addresses to determine which computers will receive information. Students explore and explain how network performance degrades when various factors affect the network. For example, students could use online network simulators to describe how network performance changes when the number of devices increases. Alternatively, students could visualize and describe changes to the distribution of network traffic when a router on the network fails.
Standard Identifier: 9-12S.NI.4
Grade Range:
9–12 Specialty
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Communicating About Computing (7.2)
Standard:
Explain how the characteristics of the Internet influence the systems developed on it.
Descriptive Statement:
The design of the Internet includes hierarchy and redundancy to help it scale reliably. An end-to-end architecture means that key functions are placed at endpoints in the network (i.e., an Internet user's computer and the server hosting a website) rather than in the middle of the network. Open standards for transmitting information across the Internet help fuel its growth. This design philosophy impacts systems and technologies that integrate with the Internet. Students explain how Internet-based systems depend on these characteristics. For example, students could explain how having common, standard protocols enable products and services from different developers to communicate. Alternatively, students could describe how the end-to-end architecture and redundancy in routing enables Internet users to access information and services even if part of the network is down; the information can still be routed from one end to another through a different path.
Explain how the characteristics of the Internet influence the systems developed on it.
Descriptive Statement:
The design of the Internet includes hierarchy and redundancy to help it scale reliably. An end-to-end architecture means that key functions are placed at endpoints in the network (i.e., an Internet user's computer and the server hosting a website) rather than in the middle of the network. Open standards for transmitting information across the Internet help fuel its growth. This design philosophy impacts systems and technologies that integrate with the Internet. Students explain how Internet-based systems depend on these characteristics. For example, students could explain how having common, standard protocols enable products and services from different developers to communicate. Alternatively, students could describe how the end-to-end architecture and redundancy in routing enables Internet users to access information and services even if part of the network is down; the information can still be routed from one end to another through a different path.
Showing 21 - 26 of 26 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881