Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 11 - 20 of 51 Standards

Standard Identifier: 3-5.AP.15

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Fostering an Inclusive Computing Culture, Creating Computational Artifacts (1.1, 5.1)

Standard:
Use an iterative process to plan and develop a program by considering the perspectives and preferences of others.

Descriptive Statement:
Planning is an important part of the iterative process of program development. Students gain a basic understanding of the importance and process of planning before beginning to write code for a program. They plan the development of a program by outlining key features, time and resource constraints, and user expectations. Students should document the plan as, for example, a storyboard, flowchart, pseudocode, or story map. For example, students could collaborate with a partner to plan and develop a program that graphs a function. They could iteratively modify the program based on feedback from diverse users, such as students who are color blind and may have trouble differentiating lines on a graph based on the color. (CA CCSS for Mathematics 5.G.1, 5.G.2) Alternatively, students could plan as a team to develop a program to display experimental data. They could implement the program in stages, generating basic displays first and then soliciting feedback from others on how easy it is to interpret (e.g., are labels clear and readable?, are lines thick enough?, are titles understandable?). Students could iteratively improve their display to make it more readable and to better support the communication of the finding of the experiment. (NGSS.3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)

Standard Identifier: 3-5.AP.16

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Creating Computational Artifacts, Communicating About Computing (5.2, 7.3)

Standard:
Observe intellectual property rights and give appropriate attribution when creating, remixing, or combining programs.

Descriptive Statement:
Intellectual property rights can vary by country, but copyright laws give the creator of a work a set of rights and prevents others from copying the work and using it in ways that they may not like. Students consider common licenses that place limitations or restrictions on the use of others' work, such as images and music downloaded from the Internet. When incorporating the work of others, students attribute the work. At this level, students could give attribution by including credits or links directly in their programs, code comments, or separate project pages. For example, when making a program to model the life cycle of a butterfly, students could modify and reuse an existing program that describes the life cycle of a frog. Based on their research, students could identify and use Creative Commons-licensed or public domain images and sounds of caterpillars and butterflies. Students give attribution by properly citing the source of the original piece as necessary. (CA NGSS: 3-LS-1-1) (CA CCSS for ELA/Literacy W.3.8, W.4.8, W.5.8) Alternatively, when creating a program explaining the structure of the United States goverment, students find Creative Commons-licensed or public domain images to represent the three branches of government and attribute ownership of the images appropriately. If students find and incorporate an audio file of a group playing part of the national anthem, they appropriately give attribution on the project page. (HSS.3.4.4)

Standard Identifier: 3-5.AP.17

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Testing and Refining Computational Artifacts (6.2)

Standard:
Test and debug a program or algorithm to ensure it accomplishes the intended task.

Descriptive Statement:
Programs do not always run properly. Students need to understand how to test and make necessary corrections to their programs to ensure they run properly. Students successfully identify and fix errors in (debug) their programs and programs created by others. Debugging strategies at this level may include testing to determine the first place the solution is in error and fixing accordingly, leaving "breadcrumbs" in a program, and soliciting assistance from peers and online resources. For example, when students are developing a program to control the movement of a robot in a confined space, students test various inputs that control movement of the robot to make sure it behaves as intended (e.g., if an input would cause the robot to move past a wall of the confined space, it should not move at all). (CA NGSS: 3-5-ETS1-3) Additionally, students could test and debug an algorithm by tracing the inputs and outputs on a whiteboard. When noticing "bugs" (errors), students could identify what was supposed to happen and step through the algorithm to locate and then correct the error.

Standard Identifier: 3-5.AP.18

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Collaborating Around Computing (2.2)

Standard:
Perform different roles when collaborating with peers during the design, implementation, and review stages of program development.

Descriptive Statement:
Collaborative computing is the process of creating computational artifacts by working in pairs or on teams. It involves asking for the contributions and feedback of others. Effective collaboration can often lead to better outcomes than working independently. With teacher guidance, students take turns in different roles during program development, such as driver, navigator, notetaker, facilitator, and debugger, as they design and implement their program. For example, while taking on different roles during program development, students could create and maintain a journal about their experiences working collaboratively. (CA CCSS for ELA/Literacy W.3.10, W.4.10, W.5.10) (CA NGSS: 3-5-ETS1-2)

Standard Identifier: 3-5.AP.19

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Communicating About Computing (7.2)

Standard:
Describe choices made during program development using code comments, presentations, and demonstrations.

Descriptive Statement:
People communicate about their code to help others understand and use their programs. Explaining one's design choices gives others a better understanding of one's work. Students may explain their step-by-step process of creating a program in a presentation or demonstration of their personal code journals. They describe how comments within code organize thought and process during the develpment of the program. For example, students could describe the decision to have the score in a game flash when it can be rounded to 100 by writing a comment in the code. (CA CCSS for Mathematics 3.NBT.1) Alternatively, students could present their overall program development experience and justify choices made by using storyboards, annotated images, videos, and/or journal entries. (CA CCSS for ELA/Literacy SL.3.4, SL.4.4, SL.5.4, SL.3.5, SL.4.5, SL.5.5) (CA NGSS: 3-5-ETS1-1, 3.5-ETS1-2, 3.5-ETS1-3)

Standard Identifier: 3-5.CS.3

Grade Range: 3–5
Concept: Computing Systems
Subconcept: Troubleshooting
Practice(s): Testing and Refining Computational Artifacts (6.2)

Standard:
Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies.

Descriptive Statement:
Although computing systems vary, common troubleshooting strategies can be used across many different systems. Students use troubleshooting strategies to identify problems that could include a device not responding, lacking power, lacking a network connection, an app crashing, not playing sounds, or password entry not working. Students use and develop various solutions to address these problems. Solutions may include rebooting the device, checking for power, checking network availability, opening and closing an app, making sure speakers are turned on or headphones are plugged in, and making sure that the caps lock key is not on. For example, students could prepare for and participate in a collaborative discussion in which they identify and list computing system problems and then describe common successful fixes. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could write informative/explanatory texts, create a poster, or use another medium of communication to examine common troubleshooting strategies and convey these ideas and information clearly. (CA CCSS for ELA/Literacy W.3.2, W.4.2, W.5.2)

Standard Identifier: 3-5.DA.9

Grade Range: 3–5
Concept: Data & Analysis
Subconcept: Inference & Models
Practice(s): Communicating About Computing (7.1)

Standard:
Use data to highlight and/or propose relationships, predict outcomes, or communicate ideas.

Descriptive Statement:
The accuracy of data analysis is related to how the data is represented. Inferences or predictions based on data are less likely to be accurate if the data is insufficient, incomplete, or inaccurate or if the data is incorrect in some way. Additionally, people select aspects and subsets of data to be transformed, organized, and categorized. Students should be able to refer to data when communicating an idea, in order to highlight and/or propose relationships, predict outcomes, highlight different views and/or communicate insights and ideas. For example, students can be provided a scenario in which they are city managers who have a specific amount of funds to improve a city in California. Students can collect data of a city concerning land use, vegetation, wildlife, climate, population density, services and transportation (HSS.4.1.5) to determine and present what area needs to be focused on to improve a problem. Students can compare their data and planned use of funds with peers, clearly communicating or predict outcomes based on data collected. (CA CCCS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could record the temperature at noon each day to show that temperatures are higher in certain months of the year. If temperatures are not recorded on non-school days or are recorded incorrectly, the data would be incomplete and ideas being communicated could be inaccurate. Students may also record the day of the week on which the data was collected, but this would have no relevance to whether temperatures are higher or lower. In order to have sufficient and accurate data on which to communicate the idea, students might use data provided by a governmental weather agency. (CA NGSS: 3-ESS2-1)

Standard Identifier: 3-5.NI.5

Grade Range: 3–5
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Recognizing and Defining Computational Problems (3.1)

Standard:
Describe physical and digital security measures for protecting personal information.

Descriptive Statement:
Personal information can be protected physically and digitally. Cybersecurity is the protection from unauthorized use of electronic data, or the measures taken to achieve this. Students identify what personal information is and the reasons for protecting it. Students describe physical and digital approaches for protecting personal information such as using strong passwords and biometric scanners. For example, students could engage in a collaborative discussion orally or in writing regarding topics that relate to personal cybersecurity issues. Discussion topics could be based on current events related to cybersecurity or topics that are applicable to students, such as the necessity of backing up data to guard against loss, how to create strong passwords and the importance of not sharing passwords, or why we should keep operating systems updated and use anti-virus software to protect data and systems. Students could also discuss physical measures that can be used to protect data including biometric scanners, locked doors, and physical backups. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)

Standard Identifier: 3-5.NI.6

Grade Range: 3–5
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Create patterns to protect information from unauthorized access.

Descriptive Statement:
Encryption is the process of converting information or data into a code, especially to prevent unauthorized access. At this level, students use patterns as a code for encryption, to protect information. Patterns should be decodable to the party for whom the message is intended, but difficult or impossible for those with unauthorized access. For example, students could create encrypted messages via flashing a flashlight in Morse code. Other students could decode this established language even if it wasn't meant for them. To model the idea of protecting data, students should create their own variations on or changes to Morse code. This ensures that when a member of that group flashes a message only other members of their group can decode it, even if other students in the room can see it. (CA NGSS: 4-PS4-3) Alternatively, students could engage in a CS Unplugged activity that models public key encryption: One student puts a paper containing a written secret in a box, locks it with a padlock, and hands the box to a second student. Student 2 puts on a second padlock and hands it back. Student 1 removes her lock and hands the box to student 2 again. Student 2 removes his lock, opens the box, and has access to the secret that student 1 sent him. Because the box always contained at least one lock while in transit, an outside party never had the opportunity to see the message and it is protected.

Standard Identifier: 6-8.AP.11

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Variables
Practice(s): Creating Computational Artifacts (5.1, 5.2)

Standard:
Create clearly named variables that store data, and perform operations on their contents.

Descriptive Statement:
A variable is a container for data, and the name used for accessing the variable is called the identifier. Students declare, initialize, and update variables for storing different types of program data (e.g., text, integers) using names and naming conventions (e.g. camel case) that clearly convey the purpose of the variable, facilitate debugging, and improve readability. For example, students could program a quiz game with a score variable (e.g. quizScore) that is initially set to zero and increases by increments of one each time the user answers a quiz question correctly and decreases by increments of one each time a user answers a quiz question incorrectly, resulting in a score that is either a positive or negative integer. (CA CCSS for Mathematics 6.NS.5) Alternatively, students could write a program that prompts the user for their name, stores the user's response in a variable (e.g. userName), and uses this variable to greet the user by name.

Showing 11 - 20 of 51 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881