Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 1 - 8 of 8 Standards

Standard Identifier: K-2.AP.11

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Variables
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Model the way programs store data.

Descriptive Statement:
Information in the real world can be represented in computer programs. Students model the digital storage of data by transforming real-world information into symbolic representations that include text, numbers, and images. For example, after identifying symbols on a map and explaining what they represent in the real world, students could create their own symbols and corresponding legend to represent items on a map of their classroom (HSS.K.4.3, 1.2.3, 2.2.2) Alternatively, students could invent symbols to represent beat and/or pitch. Students could then modify symbols within the notation and explain how the musical phrase changes. (VAPA Music K.1.1, 1.1.1, 2.1.1, 2.2.2)

Standard Identifier: K-2.IC.19

Grade Range: K–2
Concept: Impacts of Computing
Subconcept: Social Interactions
Practice(s): Collaborating Around Computing (2.1)

Standard:
Work respectfully and responsibly with others when communicating electronically.

Descriptive Statement:
Electronic communication facilitates positive interactions, such as sharing ideas with many people, but the public and anonymous nature of electronic communication also allows intimidating and inappropriate behavior in the form of cyberbullying. Responsible electronic communication includes limiting access to personably identifiable information. Students learn and use appropriate behavior when communicating electronically (often called "netiquette"). For example, students could share their work on a classroom blog or in other collaborative spaces online, taking care to avoid sharing information that is inappropriate or that could personally identify themselves to others. (CA CCSS for ELA/Literacy W.K.6, W.1.6, W.21.6) Alternatively, students could provide feedback to others on their work in a kind and respectful manner. They could learn how written words can be easily misinterpreted and may seem negative when the intention may be to express confusion, give ideas, or prompt further discussion. They could also learn to identify harmful behavior on collaborative spaces and intervening to find the proper authority to help. (CA CCSS for ELA/Literacy W.K.5, W.1.5, W.2.5) (HSS 1.1.2)

Standard Identifier: 3-5.CS.2

Grade Range: 3–5
Concept: Computing Systems
Subconcept: Hardware & Software
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Demonstrate how computer hardware and software work together as a system to accomplish tasks.

Descriptive Statement:
Hardware and software are both needed to accomplish tasks with a computing device. Students create a model to illustrate ways in which hardware and software work as a system. Students could draw a model on paper or in a drawing program, program an animation to demonstrate it, or demonstrate it by acting this out in some way. At this level, a model should only include the basic elements of a computer system, such as input, output, processor, sensors, and storage. For example, students could create a diagram or flow chart to indicate how a keyboard, desktop computer, monitor, and word processing software interact with each other. The keyboard (hardware) detects a key press, which the operating system and word processing application (software) displays as a new character that has been inserted into the document and is visible through the monitor (hardware). Students could also create a model by acting out the interactions of these different hardware and software components. Alternatively, when describing that animals and people receive different types of information through their senses, process the information in their brain, and respond to the information in different ways, students could compare this to the interaction of how the information traveling through a computer from mouse to processor are similar to signals sent through the nervous system telling our brain about the world around us to prompt responses. (CA NGSS: 4-LS1-2)

Standard Identifier: 6-8.IC.22

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Social Interactions
Practice(s): Collaborating Around Computing, Creating Computational Artifacts (2.4, 5.2)

Standard:
Collaborate with many contributors when creating a computational artifact.

Descriptive Statement:
Users have diverse sets of experiences, needs, and wants. These need to be understood and integrated into the design of computational artifacts. Students use applications that enable crowdsourcing to gather services, ideas, or content from a large group of people. At this level, crowdsourcing can be done at the local level (e.g., classroom, school, or neighborhood) and/or global level (e.g., age-appropriate online communities). For example, a group of students could use electronic surveys to solicit input from their neighborhood regarding an important social or political issue. They could collaborate with a community artist to combine animations and create a digital community collage informing the public about various points of view regarding the topic. (VAPA Visual Art 8.5.2, 8.5.4)

Standard Identifier: 9-12.AP.13

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Variables
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Create more generalized computational solutions using collections instead of repeatedly using simple variables.

Descriptive Statement:
Computers can automate repetitive tasks with algorithms that use collections to simplify and generalize computational problems. Students identify common features in multiple segments of code and substitute a single segment that uses collections (i.e., arrays, sets, lists) to account for the differences. For example, students could take a program that inputs students' scores into multiple variables and modify it to read these scores into a single array of scores. Alternatively, instead of writing one procedure to find averages of student scores and another to find averages of student absences, students could write a single general average procedure to support both tasks.

Standard Identifier: 9-12.CS.2

Grade Range: 9–12
Concept: Computing Systems
Subconcept: Hardware & Software
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Compare levels of abstraction and interactions between application software, system software, and hardware.

Descriptive Statement:
At its most basic level, a computer is composed of physical hardware on which software runs. Multiple layers of software are built upon various layers of hardware. Layers manage interactions and complexity in the computing system. System software manages a computing device's resources so that software can interact with hardware. Application software communicates with the user and the system software to accomplish its purpose. Students compare and describe how application software, system software, and hardware interact. For example, students could compare how various levels of hardware and software interact when a picture is to be taken on a smartphone. Systems software provides low-level commands to operate the camera hardware, but the application software interacts with system software at a higher level by requesting a common image file format (e.g., .png) that the system software provides.

Standard Identifier: 9-12.IC.27

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Social Interactions
Practice(s): Collaborating Around Computing (2.4)

Standard:
Use collaboration tools and methods to increase connectivity with people of different cultures and careers.

Descriptive Statement:
Increased digital connectivity and communication between people across a variety of cultures and in differing professions has changed the collaborative nature of personal and professional interaction. Students identify, explain, and use appropriate collaborative tools. For example, students could compare ways that various technological collaboration tools could help a team become more cohesive and then choose one of these tools to manage their teamwork. Alternatively, students could use different collaborative tools and methods to solicit input from not only team members and classmates but also others, such as participants in online forums or local communities.

Standard Identifier: 9-12S.AP.14

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Variables
Practice(s): Developing and Using Abstractions (4.2)

Standard:
Compare and contrast fundamental data structures and their uses.

Descriptive Statement:
Data structures are designed to provide different ways of storing and manipulating data sets to optimize various aspects of storage or runtime performance. Choice of data structures is made based on expected data characteristics and expected program functions. Students = compare and contrast how basic functions (e.g.., insertion, deletion, and modification) would differ for common data structures including lists, arrays, stacks, and queues. For example, students could draw a diagram of how different data structures change when items are added, deleted, or modified. They could explain tradeoffs in storage and efficiency issues. Alternatively, when presented with a description of a program and the functions it would be most likely to be running, students could list pros and cons for a specific data structure use in that scenario.

Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881