Computer Science Standards
Results
Showing 11 - 14 of 14 Standards
Standard Identifier: 9-12S.AP.12
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.2)
Standard:
Implement searching and sorting algorithms to solve computational problems.
Descriptive Statement:
One of the core uses of computers is to store, organize, and retrieve information when working with large amounts of data. Students create computational artifacts that use searching and/or sorting algorithms to retrieve, organize, or store information. Students do not need to select their algorithm based on efficiency. For example, students could write a script to sequence their classmates in order from youngest to oldest. Alternatively, students could write a program to find certain words within a text and report their location.
Implement searching and sorting algorithms to solve computational problems.
Descriptive Statement:
One of the core uses of computers is to store, organize, and retrieve information when working with large amounts of data. Students create computational artifacts that use searching and/or sorting algorithms to retrieve, organize, or store information. Students do not need to select their algorithm based on efficiency. For example, students could write a script to sequence their classmates in order from youngest to oldest. Alternatively, students could write a program to find certain words within a text and report their location.
Standard Identifier: 9-12S.AP.13
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Recognizing and Defining Computational Problems (3.3)
Standard:
Evaluate algorithms in terms of their efficiency.
Descriptive Statement:
Algorithms that perform the same task can be implemented in different ways, which take different amounts of time to run on a given input set. Algorithms are commonly evaluated using asymptotic analysis (i.e., “Big O”) which involves exploration of behavior when the input set grows very large. Students classify algorithms by the most common time classes (e.g., log n, linear, n log n, and quadratic or higher). For example, students could read a given algorithm, identify the control constructs, and in conjunction with input size, identify the efficiency class of the algorithm.
Evaluate algorithms in terms of their efficiency.
Descriptive Statement:
Algorithms that perform the same task can be implemented in different ways, which take different amounts of time to run on a given input set. Algorithms are commonly evaluated using asymptotic analysis (i.e., “Big O”) which involves exploration of behavior when the input set grows very large. Students classify algorithms by the most common time classes (e.g., log n, linear, n log n, and quadratic or higher). For example, students could read a given algorithm, identify the control constructs, and in conjunction with input size, identify the efficiency class of the algorithm.
Standard Identifier: 9-12S.DA.7
Grade Range:
9–12 Specialty
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Communicating About Computing (7.1)
Standard:
Select and use data collection tools and techniques to generate data sets.
Descriptive Statement:
Data collection and organization is essential for obtaining new information insights and revealing new knowledge in our modern world. As computers are able to process larger sets of data, gathering data in an efficient and reliable matter remains important. The choice of data collection tools and quality of the data collected influences how new information, insights, and knowledge will support claims and be communicated. Students devise a reliable method to gather information, use software to extract digital data from data sets, and clean and organize the data in ways that support summaries of information obtained from the data. At this level, students may, but are not required to, create their own data collection tools. For example, students could create a computational artifact that records information from a sonic distance sensor to monitor the motion of a prototype vehicle. Alternatively, students could develop a reliable and practical way to automatically digitally record the number of animals entering a portion of a field to graze. Additionally, students could also find a web site containing data (e.g., race results for a major marathon), scrape the data from the web site using data collection tools, and format the data so it can be analyzed.
Select and use data collection tools and techniques to generate data sets.
Descriptive Statement:
Data collection and organization is essential for obtaining new information insights and revealing new knowledge in our modern world. As computers are able to process larger sets of data, gathering data in an efficient and reliable matter remains important. The choice of data collection tools and quality of the data collected influences how new information, insights, and knowledge will support claims and be communicated. Students devise a reliable method to gather information, use software to extract digital data from data sets, and clean and organize the data in ways that support summaries of information obtained from the data. At this level, students may, but are not required to, create their own data collection tools. For example, students could create a computational artifact that records information from a sonic distance sensor to monitor the motion of a prototype vehicle. Alternatively, students could develop a reliable and practical way to automatically digitally record the number of animals entering a portion of a field to graze. Additionally, students could also find a web site containing data (e.g., race results for a major marathon), scrape the data from the web site using data collection tools, and format the data so it can be analyzed.
Standard Identifier: 9-12S.DA.8
Grade Range:
9–12 Specialty
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Developing and Using Abstractions, Communicating About Computing (4.1, 7.1)
Standard:
Use data analysis tools and techniques to identify patterns in data representing complex systems.
Descriptive Statement:
Data analysis tools can be useful for identifying patterns in large amounts of data in many different fields. Computers can help with the processing of extremely large sets of data making very complex systems manageable. Students use computational tools to analyze, summarize, and visualize a large set of data. For example, students could analyze a data set containing marathon times and determine how age, gender, weather, and course features correlate with running times. Alternatively, students could analyze a data set of social media interactions to identify the most influential users and visualize the intersections between different social groups.
Use data analysis tools and techniques to identify patterns in data representing complex systems.
Descriptive Statement:
Data analysis tools can be useful for identifying patterns in large amounts of data in many different fields. Computers can help with the processing of extremely large sets of data making very complex systems manageable. Students use computational tools to analyze, summarize, and visualize a large set of data. For example, students could analyze a data set containing marathon times and determine how age, gender, weather, and course features correlate with running times. Alternatively, students could analyze a data set of social media interactions to identify the most influential users and visualize the intersections between different social groups.
Showing 11 - 14 of 14 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881