Computer Science Standards
Results
Showing 41 - 46 of 46 Standards
Standard Identifier: 9-12S.AP.25
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Collaborating Around Computing, Creating Computational Artifacts (2.4, 5.2)
Standard:
Use version control systems, integrated development environments (IDEs), and collaborative tools and practices (e.g., code documentation) while developing software within a group.
Descriptive Statement:
Software development is a process that benefits from the use of tools that manage complexity, iterative development, and collaboration. Large or complex software projects often require contributions from multiple developers. Version control systems and other collaborative tools and practices help coordinate the process and products contributed by individuals on a development team. An integrated development environment (IDE) is a program within which a developer implements, compiles or interprets, tests, debugs, and deploys a software project. Students use common software development and documentation support tools in the context of a group software development project. At this level, facility with the full functionality available in the collaborative tools is not expected. For example, students could use common version control systems to modify and improve code or revert to a previous code version. Alternatively, students could use appropriate IDEs to support more efficient code design and development. Additionally, students could use various collaboration, communication, and code documentation tools designed to support groups engaging in complex and interrelated work.
Use version control systems, integrated development environments (IDEs), and collaborative tools and practices (e.g., code documentation) while developing software within a group.
Descriptive Statement:
Software development is a process that benefits from the use of tools that manage complexity, iterative development, and collaboration. Large or complex software projects often require contributions from multiple developers. Version control systems and other collaborative tools and practices help coordinate the process and products contributed by individuals on a development team. An integrated development environment (IDE) is a program within which a developer implements, compiles or interprets, tests, debugs, and deploys a software project. Students use common software development and documentation support tools in the context of a group software development project. At this level, facility with the full functionality available in the collaborative tools is not expected. For example, students could use common version control systems to modify and improve code or revert to a previous code version. Alternatively, students could use appropriate IDEs to support more efficient code design and development. Additionally, students could use various collaboration, communication, and code documentation tools designed to support groups engaging in complex and interrelated work.
Standard Identifier: 9-12S.AP.26
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Communicating About Computing (7.2)
Standard:
Compare multiple programming languages, and discuss how their features make them suitable for solving different types of problems.
Descriptive Statement:
Particular problems may be more effectively solved using some programming languages than other programming languages. Students provide a rationale for why a specific programming language is better suited for a solving a particular class of problem. For example, students could explain how a language with a large library base can make developing a web application easier. Alternatively, students could explain how languages that support particular programming paradigms (e.g., object-oriented or functional) can make implementation more aligned with design choices. Additionally, students could discuss how languages that implement garbage collection are good for simplicity of memory management, but may result in poor performance characteristics.
Compare multiple programming languages, and discuss how their features make them suitable for solving different types of problems.
Descriptive Statement:
Particular problems may be more effectively solved using some programming languages than other programming languages. Students provide a rationale for why a specific programming language is better suited for a solving a particular class of problem. For example, students could explain how a language with a large library base can make developing a web application easier. Alternatively, students could explain how languages that support particular programming paradigms (e.g., object-oriented or functional) can make implementation more aligned with design choices. Additionally, students could discuss how languages that implement garbage collection are good for simplicity of memory management, but may result in poor performance characteristics.
Standard Identifier: 9-12S.DA.7
Grade Range:
9–12 Specialty
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Communicating About Computing (7.1)
Standard:
Select and use data collection tools and techniques to generate data sets.
Descriptive Statement:
Data collection and organization is essential for obtaining new information insights and revealing new knowledge in our modern world. As computers are able to process larger sets of data, gathering data in an efficient and reliable matter remains important. The choice of data collection tools and quality of the data collected influences how new information, insights, and knowledge will support claims and be communicated. Students devise a reliable method to gather information, use software to extract digital data from data sets, and clean and organize the data in ways that support summaries of information obtained from the data. At this level, students may, but are not required to, create their own data collection tools. For example, students could create a computational artifact that records information from a sonic distance sensor to monitor the motion of a prototype vehicle. Alternatively, students could develop a reliable and practical way to automatically digitally record the number of animals entering a portion of a field to graze. Additionally, students could also find a web site containing data (e.g., race results for a major marathon), scrape the data from the web site using data collection tools, and format the data so it can be analyzed.
Select and use data collection tools and techniques to generate data sets.
Descriptive Statement:
Data collection and organization is essential for obtaining new information insights and revealing new knowledge in our modern world. As computers are able to process larger sets of data, gathering data in an efficient and reliable matter remains important. The choice of data collection tools and quality of the data collected influences how new information, insights, and knowledge will support claims and be communicated. Students devise a reliable method to gather information, use software to extract digital data from data sets, and clean and organize the data in ways that support summaries of information obtained from the data. At this level, students may, but are not required to, create their own data collection tools. For example, students could create a computational artifact that records information from a sonic distance sensor to monitor the motion of a prototype vehicle. Alternatively, students could develop a reliable and practical way to automatically digitally record the number of animals entering a portion of a field to graze. Additionally, students could also find a web site containing data (e.g., race results for a major marathon), scrape the data from the web site using data collection tools, and format the data so it can be analyzed.
Standard Identifier: 9-12S.DA.8
Grade Range:
9–12 Specialty
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Developing and Using Abstractions, Communicating About Computing (4.1, 7.1)
Standard:
Use data analysis tools and techniques to identify patterns in data representing complex systems.
Descriptive Statement:
Data analysis tools can be useful for identifying patterns in large amounts of data in many different fields. Computers can help with the processing of extremely large sets of data making very complex systems manageable. Students use computational tools to analyze, summarize, and visualize a large set of data. For example, students could analyze a data set containing marathon times and determine how age, gender, weather, and course features correlate with running times. Alternatively, students could analyze a data set of social media interactions to identify the most influential users and visualize the intersections between different social groups.
Use data analysis tools and techniques to identify patterns in data representing complex systems.
Descriptive Statement:
Data analysis tools can be useful for identifying patterns in large amounts of data in many different fields. Computers can help with the processing of extremely large sets of data making very complex systems manageable. Students use computational tools to analyze, summarize, and visualize a large set of data. For example, students could analyze a data set containing marathon times and determine how age, gender, weather, and course features correlate with running times. Alternatively, students could analyze a data set of social media interactions to identify the most influential users and visualize the intersections between different social groups.
Standard Identifier: 9-12S.NI.3
Grade Range:
9–12 Specialty
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Examine the scalability and reliability of networks, by describing the relationship between routers, switches, servers, topology, and addressing.
Descriptive Statement:
Choice of network topology is determined, in part, by how many devices can be supported and the character of communication needs between devices. Each device is assigned an address that uniquely identifies it on the network. Routers function by comparing addresses to determine how information on the network should reach its desgination. Switches compare addresses to determine which computers will receive information. Students explore and explain how network performance degrades when various factors affect the network. For example, students could use online network simulators to describe how network performance changes when the number of devices increases. Alternatively, students could visualize and describe changes to the distribution of network traffic when a router on the network fails.
Examine the scalability and reliability of networks, by describing the relationship between routers, switches, servers, topology, and addressing.
Descriptive Statement:
Choice of network topology is determined, in part, by how many devices can be supported and the character of communication needs between devices. Each device is assigned an address that uniquely identifies it on the network. Routers function by comparing addresses to determine how information on the network should reach its desgination. Switches compare addresses to determine which computers will receive information. Students explore and explain how network performance degrades when various factors affect the network. For example, students could use online network simulators to describe how network performance changes when the number of devices increases. Alternatively, students could visualize and describe changes to the distribution of network traffic when a router on the network fails.
Standard Identifier: 9-12S.NI.4
Grade Range:
9–12 Specialty
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Communicating About Computing (7.2)
Standard:
Explain how the characteristics of the Internet influence the systems developed on it.
Descriptive Statement:
The design of the Internet includes hierarchy and redundancy to help it scale reliably. An end-to-end architecture means that key functions are placed at endpoints in the network (i.e., an Internet user's computer and the server hosting a website) rather than in the middle of the network. Open standards for transmitting information across the Internet help fuel its growth. This design philosophy impacts systems and technologies that integrate with the Internet. Students explain how Internet-based systems depend on these characteristics. For example, students could explain how having common, standard protocols enable products and services from different developers to communicate. Alternatively, students could describe how the end-to-end architecture and redundancy in routing enables Internet users to access information and services even if part of the network is down; the information can still be routed from one end to another through a different path.
Explain how the characteristics of the Internet influence the systems developed on it.
Descriptive Statement:
The design of the Internet includes hierarchy and redundancy to help it scale reliably. An end-to-end architecture means that key functions are placed at endpoints in the network (i.e., an Internet user's computer and the server hosting a website) rather than in the middle of the network. Open standards for transmitting information across the Internet help fuel its growth. This design philosophy impacts systems and technologies that integrate with the Internet. Students explain how Internet-based systems depend on these characteristics. For example, students could explain how having common, standard protocols enable products and services from different developers to communicate. Alternatively, students could describe how the end-to-end architecture and redundancy in routing enables Internet users to access information and services even if part of the network is down; the information can still be routed from one end to another through a different path.
Showing 41 - 46 of 46 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881