Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 41 - 50 of 67 Standards

Standard Identifier: 9-12.AP.22

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Communicating About Computing (7.2)

Standard:
Document decisions made during the design process using text, graphics, presentations, and/or demonstrations in the development of complex programs.

Descriptive Statement:
Complex programs are often iteratively designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. Comments are included in code both to document the purpose of modules as well as the implementation details within a module. Together these support documentation of the design process. Students use resources such as libraries and tools to edit and manage parts of the program and corresponding documentation. For example, during development of a computational artifact students could comment their code (with date, modification, and rationale), sketch a flowchart to summarize control flow in a code journal, and share ideas and updates on a white board. Students may document their logic by explaining the development process and presenting to the class. The presentation could include photos of their white board, a video or screencast explaining the development process, or recorded audio description.

Standard Identifier: 9-12.CS.1

Grade Range: 9–12
Concept: Computing Systems
Subconcept: Devices
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Describe ways in which abstractions hide the underlying implementation details of computing systems to simplify user experiences.

Descriptive Statement:
An abstraction is a representation of an idea or phenomenon that hides details irrelevant to the question at hand. Computing systems, both stand alone and embedded in products, are often integrated with other systems to simplify user experiences. For example, students could identify geolocation hardware embedded in a smartphone and describe how this simplifies the users experience since the user does not have to enter her own location on the phone. Alternatively, students might select an embedded device such as a car stereo, identify the types of data (e.g., radio station presets, volume level) and procedures (e.g., increase volume, store/recall saved station, mute) it includes, and explain how the implementation details are hidden from the user.

Standard Identifier: 9-12.CS.3

Grade Range: 9–12
Concept: Computing Systems
Subconcept: Troubleshooting
Practice(s): Testing and Refining Computational Artifacts (6.2)

Standard:
Develop guidelines that convey systematic troubleshooting strategies that others can use to identify and fix errors.

Descriptive Statement:
Troubleshooting complex problems involves the use of multiple sources when researching, evaluating, and implementing potential solutions. Troubleshooting also relies on experience, such as when people recognize that a problem is similar to one they have seen before and adapt solutions that have worked in the past. For example, students could create a list of troubleshooting strategies to debug network connectivity problems such as checking hardware and software status and settings, rebooting devices, and checking security settings. Alternatively, students could create troubleshooting guidelines for help desk employees based on commonly observed problems (e.g., problems connecting a new device to the computer, problems printing from a computer to a network printer).

Standard Identifier: 9-12.DA.10

Grade Range: 9–12
Concept: Data & Analysis
Subconcept: Collection, Visualization, & Transformation
Practice(s): Creating Computational Artifacts (5.2)

Standard:
Create data visualizations to help others better understand real-world phenomena.

Descriptive Statement:
People transform, generalize, simplify, and present large data sets in different ways to influence how other people interpret and understand the underlying information. Students select relevant data from large or complex data sets in support of a claim or to communicate the information in a more sophisticated manner. Students use software tools or programming to perform a range of mathematical operations to transform and analyze data and create powerful data visualizations (that reveal patterns in the data). For example, students could create data visualizations to reveal patterns in voting data by state, gender, political affiliation, or socioeconomic status. Alternatively, students could use U.S. government data on criticially endangered animals to visualize population change over time.

Standard Identifier: 9-12.IC.23

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Fostering an Inclusive Computing Culture, Recognizing and Defining Computational Problems (1.2, 3.1)

Standard:
Evaluate the ways computing impacts personal, ethical, social, economic, and cultural practices.

Descriptive Statement:
Computing may improve, harm, or maintain practices. An understanding of how equity deficits, such as minimal exposure to computing, access to education, and training opportunities, are related to larger, systemic problems in society enables students to create more meaningful artifacts. Students illustrate the positive, negative, and/or neutral impacts of computing. For example, students could evaluate the accessibility of a product for a broad group of end users, such as people who lack access to broadband or who have various disabilities. Students could identify potential bias during the design process and evaluate approaches to maximize accessibility in product design. Alternatively, students could evaluate the impact of social media on cultural, economic, and social practices around the world.

Standard Identifier: 9-12.IC.24

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Fostering an Inclusive Computing Culture (1.2)

Standard:
Identify impacts of bias and equity deficit on design and implementation of computational artifacts and apply appropriate processes for evaluating issues of bias.

Descriptive Statement:
Biases could include incorrect assumptions developers have made about their users, including minimal exposure to computing, access to education, and training opportunities. Students identify and use strategies to test and refine computational artifacts with the goal of reducing bias and equity deficits and increasing universal access. For example, students could use a spreadsheet to chart various forms of equity deficits, and identify solutions in existing software. Students could use and refine the spreadsheet solutions to create a strategy for methodically testing software specifically for bias and equity.

Standard Identifier: 9-12.IC.25

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Recognizing and Defining Computational Problems (3.1)

Standard:
Demonstrate ways a given algorithm applies to problems across disciplines.

Descriptive Statement:
Students identify how a given algorithm can be applied to real-world problems in different disciplines. For example, students could demonstrate how a randomization algorithm can be used to select participants for a clinical medical trial or to select a flash card to display on a vocabulary quiz. Alternatively, students could demonstrate how searching and sorting algorithms are needed to organize records in manufacturing settings, or to support doctors queries of patient records, or to help governments manage support services they provide to their citizens.

Standard Identifier: 9-12.IC.26

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Communicating About Computing (7.2)

Standard:
Study, discuss, and think critically about the potential impacts and implications of emerging technologies on larger social, economic, and political structures, with evidence from credible sources.

Descriptive Statement:
For example, after studying the rise of artifical intelligence, students create a cause and effect chart to represent positive and negative impacts of this technology on society.

Standard Identifier: 9-12.NI.4

Grade Range: 9–12
Concept: Networks & the Internet
Subconcept: Network Communication & Organization
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Describe issues that impact network functionality.

Descriptive Statement:
Many different organizations, including educational, governmental, private businesses, and private households rely on networks to function adequately in order to engage in online commerce and activity. Quality of Service (QoS) refers to the capability of a network to provide better service to selected network traffic over various technologies from the perspective of the consumer. Students define and discuss performance measures that impact network functionality, such as latency, bandwidth, throughput, jitter, and error rate. For example, students could use online network simulators to explore how performance measures impact network functionality and describe impacts when various changes in the network occur. Alternatively, students could describe how pauses in television interviews conducted over satellite telephones are impacted by networking factors such as latency and jitter.

Standard Identifier: 9-12.NI.5

Grade Range: 9–12
Concept: Networks & the Internet
Subconcept: Network Communication & Organization
Practice(s): Communicating About Computing (7.2)

Standard:
Describe the design characteristics of the Internet.

Descriptive Statement:
The Internet connects devices and networks all over the world. Large-scale coordination occurs among many different machines across multiple paths every time a web page is opened or an image is viewed online. Through the domain name system (DNS), devices on the Internet can look up Internet Protocol (IP) addresses, allowing end-to-end communication between devices. The design decisions that direct the coordination among systems composing the Internet also allow for scalability and reliability. Students factor historical, cultural, and economic decisions in their explanations of the Internet. For example, students could explain how hierarchy in the DNS supports scalability and reliability. Alternatively, students could describe how the redundancy of routing between two nodes on the Internet increases reliability and scales as the Internet grows.

Showing 41 - 50 of 67 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881