Computer Science Standards
Results
Showing 21 - 30 of 33 Standards
Standard Identifier: 9-12.DA.9
Grade Range:
9–12
Concept:
Data & Analysis
Subconcept:
Storage
Practice(s):
Recognizing and Defining Computational Problems (3.3)
Standard:
Describe tradeoffs associated with how data elements are organized and stored.
Descriptive Statement:
People make choices about how data elements are organized and where data is stored. These choices affect cost, speed, reliability, accessibility, privacy, and integrity. Students describe implications for a given data organziation or storage choice in light of a specific problem. For example, students might consider the cost, speed, reliability, accessibility, privacy, and integrity tradeoffs between storing photo data on a mobile device versus in the cloud. Alternatively, students might compare the tradeoffs between file size and image quality of various image file formats and how choice of format may be infuenced by the device on which it is to be accessed (e.g., smartphone, computer).
Describe tradeoffs associated with how data elements are organized and stored.
Descriptive Statement:
People make choices about how data elements are organized and where data is stored. These choices affect cost, speed, reliability, accessibility, privacy, and integrity. Students describe implications for a given data organziation or storage choice in light of a specific problem. For example, students might consider the cost, speed, reliability, accessibility, privacy, and integrity tradeoffs between storing photo data on a mobile device versus in the cloud. Alternatively, students might compare the tradeoffs between file size and image quality of various image file formats and how choice of format may be infuenced by the device on which it is to be accessed (e.g., smartphone, computer).
Standard Identifier: 9-12.IC.23
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Fostering an Inclusive Computing Culture, Recognizing and Defining Computational Problems (1.2, 3.1)
Standard:
Evaluate the ways computing impacts personal, ethical, social, economic, and cultural practices.
Descriptive Statement:
Computing may improve, harm, or maintain practices. An understanding of how equity deficits, such as minimal exposure to computing, access to education, and training opportunities, are related to larger, systemic problems in society enables students to create more meaningful artifacts. Students illustrate the positive, negative, and/or neutral impacts of computing. For example, students could evaluate the accessibility of a product for a broad group of end users, such as people who lack access to broadband or who have various disabilities. Students could identify potential bias during the design process and evaluate approaches to maximize accessibility in product design. Alternatively, students could evaluate the impact of social media on cultural, economic, and social practices around the world.
Evaluate the ways computing impacts personal, ethical, social, economic, and cultural practices.
Descriptive Statement:
Computing may improve, harm, or maintain practices. An understanding of how equity deficits, such as minimal exposure to computing, access to education, and training opportunities, are related to larger, systemic problems in society enables students to create more meaningful artifacts. Students illustrate the positive, negative, and/or neutral impacts of computing. For example, students could evaluate the accessibility of a product for a broad group of end users, such as people who lack access to broadband or who have various disabilities. Students could identify potential bias during the design process and evaluate approaches to maximize accessibility in product design. Alternatively, students could evaluate the impact of social media on cultural, economic, and social practices around the world.
Standard Identifier: 9-12.IC.24
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Fostering an Inclusive Computing Culture (1.2)
Standard:
Identify impacts of bias and equity deficit on design and implementation of computational artifacts and apply appropriate processes for evaluating issues of bias.
Descriptive Statement:
Biases could include incorrect assumptions developers have made about their users, including minimal exposure to computing, access to education, and training opportunities. Students identify and use strategies to test and refine computational artifacts with the goal of reducing bias and equity deficits and increasing universal access. For example, students could use a spreadsheet to chart various forms of equity deficits, and identify solutions in existing software. Students could use and refine the spreadsheet solutions to create a strategy for methodically testing software specifically for bias and equity.
Identify impacts of bias and equity deficit on design and implementation of computational artifacts and apply appropriate processes for evaluating issues of bias.
Descriptive Statement:
Biases could include incorrect assumptions developers have made about their users, including minimal exposure to computing, access to education, and training opportunities. Students identify and use strategies to test and refine computational artifacts with the goal of reducing bias and equity deficits and increasing universal access. For example, students could use a spreadsheet to chart various forms of equity deficits, and identify solutions in existing software. Students could use and refine the spreadsheet solutions to create a strategy for methodically testing software specifically for bias and equity.
Standard Identifier: 9-12.IC.25
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Demonstrate ways a given algorithm applies to problems across disciplines.
Descriptive Statement:
Students identify how a given algorithm can be applied to real-world problems in different disciplines. For example, students could demonstrate how a randomization algorithm can be used to select participants for a clinical medical trial or to select a flash card to display on a vocabulary quiz. Alternatively, students could demonstrate how searching and sorting algorithms are needed to organize records in manufacturing settings, or to support doctors queries of patient records, or to help governments manage support services they provide to their citizens.
Demonstrate ways a given algorithm applies to problems across disciplines.
Descriptive Statement:
Students identify how a given algorithm can be applied to real-world problems in different disciplines. For example, students could demonstrate how a randomization algorithm can be used to select participants for a clinical medical trial or to select a flash card to display on a vocabulary quiz. Alternatively, students could demonstrate how searching and sorting algorithms are needed to organize records in manufacturing settings, or to support doctors queries of patient records, or to help governments manage support services they provide to their citizens.
Standard Identifier: 9-12.IC.26
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Communicating About Computing (7.2)
Standard:
Study, discuss, and think critically about the potential impacts and implications of emerging technologies on larger social, economic, and political structures, with evidence from credible sources.
Descriptive Statement:
For example, after studying the rise of artifical intelligence, students create a cause and effect chart to represent positive and negative impacts of this technology on society.
Study, discuss, and think critically about the potential impacts and implications of emerging technologies on larger social, economic, and political structures, with evidence from credible sources.
Descriptive Statement:
For example, after studying the rise of artifical intelligence, students create a cause and effect chart to represent positive and negative impacts of this technology on society.
Standard Identifier: 9-12S.AP.16
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.2, 4.2)
Standard:
Analyze a large-scale computational problem and identify generalizable patterns or problem components that can be applied to a solution.
Descriptive Statement:
As students encounter complex, real-world problems that span multiple disciplines or social systems, they need to be able to decompose problems and apply already developed code as part of their solutions. Students decompose complex problems into manageable subproblems that could potentially be solved with programs or procedures that can be reused or already exist. For example, in analyzing an Internet radio app, students could identify that users need to create an account and enter a password. They could identify a common application programming interface (API) for checking and displaying password strength. Additionally, students could recognize that the songs would need to be sorted by the time last played in order to display the most recently played songs and identify a common API for sorting dates from most to least recent. Alternatively, in analyzing the problem of tracking medical treatment in a hospital, students could recognize that patient records need to be stored in a database and identify a database solution to support quick access and modification of patient records. Additionally, they could recognize that records in the database need to be stored securely and could identify an encryption API to support the desired level of privacy.
Analyze a large-scale computational problem and identify generalizable patterns or problem components that can be applied to a solution.
Descriptive Statement:
As students encounter complex, real-world problems that span multiple disciplines or social systems, they need to be able to decompose problems and apply already developed code as part of their solutions. Students decompose complex problems into manageable subproblems that could potentially be solved with programs or procedures that can be reused or already exist. For example, in analyzing an Internet radio app, students could identify that users need to create an account and enter a password. They could identify a common application programming interface (API) for checking and displaying password strength. Additionally, students could recognize that the songs would need to be sorted by the time last played in order to display the most recently played songs and identify a common API for sorting dates from most to least recent. Alternatively, in analyzing the problem of tracking medical treatment in a hospital, students could recognize that patient records need to be stored in a database and identify a database solution to support quick access and modification of patient records. Additionally, they could recognize that records in the database need to be stored securely and could identify an encryption API to support the desired level of privacy.
Standard Identifier: 9-12S.AP.17
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts (4.3, 5.2)
Standard:
Construct solutions to problems using student-created components, such as procedures, modules, and/or objects.
Descriptive Statement:
Programmers often address complex tasks through design and decomposition using procedures and/or modules. In object-oriented programming languages, classes can support this decomposition. Students create a computational artifact that solves a problem through use of procedures, modules, and/or objects. This problem should be of sufficient complexity to benefit from decomposition and/or use of objects. For example, students could write a flashcard program in which each card is able to show both the question and answer and record user history. Alternatively, students could create a simulation of an ecosystem in which sprites carry out behaviors, such as consuming resources.
Construct solutions to problems using student-created components, such as procedures, modules, and/or objects.
Descriptive Statement:
Programmers often address complex tasks through design and decomposition using procedures and/or modules. In object-oriented programming languages, classes can support this decomposition. Students create a computational artifact that solves a problem through use of procedures, modules, and/or objects. This problem should be of sufficient complexity to benefit from decomposition and/or use of objects. For example, students could write a flashcard program in which each card is able to show both the question and answer and record user history. Alternatively, students could create a simulation of an ecosystem in which sprites carry out behaviors, such as consuming resources.
Standard Identifier: 9-12S.AP.18
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts, Testing and Refining Computational Artifacts (4.2, 5.3, 6.2)
Standard:
Demonstrate code reuse by creating programming solutions using libraries and APIs.
Descriptive Statement:
Code reuse is critical both for managing complexity in modern programs, but also in increasing programming efficiency and reliability by having programmers reuse code that has been highly vetted and tested. Software libraries allow developers to integrate common and often complex functionality without having to reimplement that functionality from scratch. Students identify, evaluate, and select appropriate application programming interfaces (APIs) from software libraries to use with a given language and operating system. They appropriately use resources such as technical documentation, online forums, and developer communities to learn about libraries and troubleshoot problems with APIs that they have chosen. For example, students could import charting and graphing modules to display data sets, adopt an online service that provides cloud storage and retrieval for a database used in a multiplayer game, or import location services into an app that identifies points of interest on a map. Libraries of APIs can be student-created or publicly available (e.g., common graphics libraries or map/navigation APIs).
Demonstrate code reuse by creating programming solutions using libraries and APIs.
Descriptive Statement:
Code reuse is critical both for managing complexity in modern programs, but also in increasing programming efficiency and reliability by having programmers reuse code that has been highly vetted and tested. Software libraries allow developers to integrate common and often complex functionality without having to reimplement that functionality from scratch. Students identify, evaluate, and select appropriate application programming interfaces (APIs) from software libraries to use with a given language and operating system. They appropriately use resources such as technical documentation, online forums, and developer communities to learn about libraries and troubleshoot problems with APIs that they have chosen. For example, students could import charting and graphing modules to display data sets, adopt an online service that provides cloud storage and retrieval for a database used in a multiplayer game, or import location services into an app that identifies points of interest on a map. Libraries of APIs can be student-created or publicly available (e.g., common graphics libraries or map/navigation APIs).
Standard Identifier: 9-12S.DA.7
Grade Range:
9–12 Specialty
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Communicating About Computing (7.1)
Standard:
Select and use data collection tools and techniques to generate data sets.
Descriptive Statement:
Data collection and organization is essential for obtaining new information insights and revealing new knowledge in our modern world. As computers are able to process larger sets of data, gathering data in an efficient and reliable matter remains important. The choice of data collection tools and quality of the data collected influences how new information, insights, and knowledge will support claims and be communicated. Students devise a reliable method to gather information, use software to extract digital data from data sets, and clean and organize the data in ways that support summaries of information obtained from the data. At this level, students may, but are not required to, create their own data collection tools. For example, students could create a computational artifact that records information from a sonic distance sensor to monitor the motion of a prototype vehicle. Alternatively, students could develop a reliable and practical way to automatically digitally record the number of animals entering a portion of a field to graze. Additionally, students could also find a web site containing data (e.g., race results for a major marathon), scrape the data from the web site using data collection tools, and format the data so it can be analyzed.
Select and use data collection tools and techniques to generate data sets.
Descriptive Statement:
Data collection and organization is essential for obtaining new information insights and revealing new knowledge in our modern world. As computers are able to process larger sets of data, gathering data in an efficient and reliable matter remains important. The choice of data collection tools and quality of the data collected influences how new information, insights, and knowledge will support claims and be communicated. Students devise a reliable method to gather information, use software to extract digital data from data sets, and clean and organize the data in ways that support summaries of information obtained from the data. At this level, students may, but are not required to, create their own data collection tools. For example, students could create a computational artifact that records information from a sonic distance sensor to monitor the motion of a prototype vehicle. Alternatively, students could develop a reliable and practical way to automatically digitally record the number of animals entering a portion of a field to graze. Additionally, students could also find a web site containing data (e.g., race results for a major marathon), scrape the data from the web site using data collection tools, and format the data so it can be analyzed.
Standard Identifier: 9-12S.DA.8
Grade Range:
9–12 Specialty
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Developing and Using Abstractions, Communicating About Computing (4.1, 7.1)
Standard:
Use data analysis tools and techniques to identify patterns in data representing complex systems.
Descriptive Statement:
Data analysis tools can be useful for identifying patterns in large amounts of data in many different fields. Computers can help with the processing of extremely large sets of data making very complex systems manageable. Students use computational tools to analyze, summarize, and visualize a large set of data. For example, students could analyze a data set containing marathon times and determine how age, gender, weather, and course features correlate with running times. Alternatively, students could analyze a data set of social media interactions to identify the most influential users and visualize the intersections between different social groups.
Use data analysis tools and techniques to identify patterns in data representing complex systems.
Descriptive Statement:
Data analysis tools can be useful for identifying patterns in large amounts of data in many different fields. Computers can help with the processing of extremely large sets of data making very complex systems manageable. Students use computational tools to analyze, summarize, and visualize a large set of data. For example, students could analyze a data set containing marathon times and determine how age, gender, weather, and course features correlate with running times. Alternatively, students could analyze a data set of social media interactions to identify the most influential users and visualize the intersections between different social groups.
Showing 21 - 30 of 33 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881