Computer Science Standards
Remove this criterion from the search
Collection, Visualization, & Transformation
Remove this criterion from the search
Control
Remove this criterion from the search
Devices
Remove this criterion from the search
Inference & Models
Remove this criterion from the search
Network Communication & Organization
Remove this criterion from the search
Safety, Law, & Ethics
Results
Showing 1 - 10 of 37 Standards
Standard Identifier: K-2.AP.12
Grade Range:
K–2
Concept:
Algorithms & Programming
Subconcept:
Control
Practice(s):
Creating Computational Artifacts (5.2)
Standard:
Create programs with sequences of commands and simple loops, to express ideas or address a problem.
Descriptive Statement:
People create programs by composing sequences of commands that specify the precise order in which instructions should be executed. Loops enable programs to repeat a sequence of commands multiple times. For example, students could follow simple movements in response to oral instructions. Students could then create a simple sequence of movement commands in response to a given problem (e.g., In how many ways can you travel from point A to point B?) and represent it as a computer program, using loops to repeat commands. (VAPA Dance K.1.4, 1.2.3, 1.2.5, 1.2.8, 2.2.1, 2.2.2, 2.2.3) Alternatively, on a mat with many different CVC words, students could program robots to move to words with a similar vowel sound. Students could look for multiple ways to solve the problem and simplify their solution by incorporating loops. (CA CCSS for ELA/Literacy RF.K.2.D, RF.1.2.C)
Create programs with sequences of commands and simple loops, to express ideas or address a problem.
Descriptive Statement:
People create programs by composing sequences of commands that specify the precise order in which instructions should be executed. Loops enable programs to repeat a sequence of commands multiple times. For example, students could follow simple movements in response to oral instructions. Students could then create a simple sequence of movement commands in response to a given problem (e.g., In how many ways can you travel from point A to point B?) and represent it as a computer program, using loops to repeat commands. (VAPA Dance K.1.4, 1.2.3, 1.2.5, 1.2.8, 2.2.1, 2.2.2, 2.2.3) Alternatively, on a mat with many different CVC words, students could program robots to move to words with a similar vowel sound. Students could look for multiple ways to solve the problem and simplify their solution by incorporating loops. (CA CCSS for ELA/Literacy RF.K.2.D, RF.1.2.C)
Standard Identifier: K-2.CS.1
Grade Range:
K–2
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Fostering an Inclusive Computing Culture (1.1)
Standard:
Select and operate computing devices that perform a variety of tasks accurately and quickly based on user needs and preferences.
Descriptive Statement:
People use computing devices to perform a variety of tasks accurately and quickly. Computing devices interpret and follow the given instructions literally. Students select and operate an appropriate computing device and corresponding program or app for a given task. For example, students could use computing devices to describe what plants and animals (including humans) need to survive. In this case, students could choose to use a keyboard to type explanatory sentences onto graphics. They could also choose to use a touchscreen device with a stylus to annotate an image for a slideshow, or choose to use a camera enabled device to make a video. Student choices may reflect their own needs or the needs of others. (CA NGSS: K-LS1-1; 2-LS4-1) Alternatively, students could choose to use a computing device with audio recording capabilities to recount stories or poems. Students could clarify thoughts, ideas, or feelings via their preference of either using a device with digital drawing tools, or by creating paper and pencil drawing based on their needs and preferences. (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5)
Select and operate computing devices that perform a variety of tasks accurately and quickly based on user needs and preferences.
Descriptive Statement:
People use computing devices to perform a variety of tasks accurately and quickly. Computing devices interpret and follow the given instructions literally. Students select and operate an appropriate computing device and corresponding program or app for a given task. For example, students could use computing devices to describe what plants and animals (including humans) need to survive. In this case, students could choose to use a keyboard to type explanatory sentences onto graphics. They could also choose to use a touchscreen device with a stylus to annotate an image for a slideshow, or choose to use a camera enabled device to make a video. Student choices may reflect their own needs or the needs of others. (CA NGSS: K-LS1-1; 2-LS4-1) Alternatively, students could choose to use a computing device with audio recording capabilities to recount stories or poems. Students could clarify thoughts, ideas, or feelings via their preference of either using a device with digital drawing tools, or by creating paper and pencil drawing based on their needs and preferences. (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5)
Standard Identifier: K-2.DA.8
Grade Range:
K–2
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Developing and Using Abstractions, Communicating About Computing (4.4, 7.1)
Standard:
Collect and present data in various visual formats.
Descriptive Statement:
Data can be collected and presented in various visual formats. For example, students could measure temperature changes throughout a day. They could then discuss ways to display the data visually. Students could extend the activity by writing different narratives based on collected data, such as a story that begins in the morning when temperatures are low and one that begins in the afternoon when the sun is high and temperatures are higher. (CA CCSS for ELA/Literacy RL.K.9, RL.1.9, RL.2.9, W.K.3, W.1.3, W.2.3). Alternatively, students collect peers' favorite flavor of ice cream and brainstorm differing ways to display the data. In groups, students can choose to display and present the data in a format of their choice. (CA CCSS for Mathematics K.MD.3, 1.MD.4, 2.MD.10)
Collect and present data in various visual formats.
Descriptive Statement:
Data can be collected and presented in various visual formats. For example, students could measure temperature changes throughout a day. They could then discuss ways to display the data visually. Students could extend the activity by writing different narratives based on collected data, such as a story that begins in the morning when temperatures are low and one that begins in the afternoon when the sun is high and temperatures are higher. (CA CCSS for ELA/Literacy RL.K.9, RL.1.9, RL.2.9, W.K.3, W.1.3, W.2.3). Alternatively, students collect peers' favorite flavor of ice cream and brainstorm differing ways to display the data. In groups, students can choose to display and present the data in a format of their choice. (CA CCSS for Mathematics K.MD.3, 1.MD.4, 2.MD.10)
Standard Identifier: K-2.DA.9
Grade Range:
K–2
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Developing and Using Abstractions (4.1)
Standard:
Identify and describe patterns in data visualizations, such as charts or graphs, to make predictions.
Descriptive Statement:
Data can be used to make inferences or predictions about the world. For example, students could record the number of each color of candy in a small packet. Then, they compare their individual data with classmates. Students could use the collected data to predict how many of each colored candy will be in a full size bag of like candy. (CA CCSS for Mathematics K.MD.3, 1.MD.4, 2.MD.10) Alternatively, students could sort and classify objects according to their properties and note observations. Students could then create a graph or chart of their observations and look for connections/relationships (e.g., items that are hard are usually also smooth, or items that are fluffy are usually also light in weight.) Students then look at pictures of additional objects and make predictions regarding the properties of the objects pictured. (CA NGSS: 2-PS1-1, 2-PS1-2)
Identify and describe patterns in data visualizations, such as charts or graphs, to make predictions.
Descriptive Statement:
Data can be used to make inferences or predictions about the world. For example, students could record the number of each color of candy in a small packet. Then, they compare their individual data with classmates. Students could use the collected data to predict how many of each colored candy will be in a full size bag of like candy. (CA CCSS for Mathematics K.MD.3, 1.MD.4, 2.MD.10) Alternatively, students could sort and classify objects according to their properties and note observations. Students could then create a graph or chart of their observations and look for connections/relationships (e.g., items that are hard are usually also smooth, or items that are fluffy are usually also light in weight.) Students then look at pictures of additional objects and make predictions regarding the properties of the objects pictured. (CA NGSS: 2-PS1-1, 2-PS1-2)
Standard Identifier: K-2.IC.20
Grade Range:
K–2
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Describe approaches and rationales for keeping login information private, and for logging off of devices appropriately.
Descriptive Statement:
People use computing technology in ways that can help or hurt themselves and/or others. Harmful behaviors, such as sharing passwords or other private information and leaving public devices logged in should be recognized and avoided. Students keep login information private, log off of devices appropriately, and discuss the importance of these practices. For example, while learning about individual responsibility and citizenship, students could create a "privacy folder" to store login information, and keep this folder in a secure location that is not easily seen and accessed by classmates. Students could discuss the relative benefits and impacts of choosing to store passwords in a folder online versus on paper. They could also describe how using the same login and password across many systems and apps could lead to significant security issues and requires even more vigilance in maintaining security. (HSS K.1) Alternatively, students can write an informational piece regarding the importance of keeping login information private and logging off of public devices. (CA CCSS for ELA/Literacy W.K.2, W.1.2, W.2.2)
Describe approaches and rationales for keeping login information private, and for logging off of devices appropriately.
Descriptive Statement:
People use computing technology in ways that can help or hurt themselves and/or others. Harmful behaviors, such as sharing passwords or other private information and leaving public devices logged in should be recognized and avoided. Students keep login information private, log off of devices appropriately, and discuss the importance of these practices. For example, while learning about individual responsibility and citizenship, students could create a "privacy folder" to store login information, and keep this folder in a secure location that is not easily seen and accessed by classmates. Students could discuss the relative benefits and impacts of choosing to store passwords in a folder online versus on paper. They could also describe how using the same login and password across many systems and apps could lead to significant security issues and requires even more vigilance in maintaining security. (HSS K.1) Alternatively, students can write an informational piece regarding the importance of keeping login information private and logging off of public devices. (CA CCSS for ELA/Literacy W.K.2, W.1.2, W.2.2)
Standard Identifier: K-2.NI.4
Grade Range:
K–2
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Model and describe how people connect to other people, places, information and ideas through a network.
Descriptive Statement:
Information is passed between multiple points (nodes) on a network. The Internet is a network that enables people to connect with other people worldwide through many different points of connection. Students model ways that people communicate, find information, or acquire ideas through a network. Students use a network, such as the internet, to access information from multiple locations or devices. For example, students could utilize a cloud-based platform to access shared documents or note-taking applications for group research projects, and then create a model (e.g., flowchart) to illustrate how this network aids collaboration. (CA CCSS for ELA/Literacy W.K.7, W.1.7, W.2.7) Alternatively, students could design devices that use light or sound to aid communication across distances (e.g., light source to send signals, paper cup and string “telephones,” and a pattern of drum beats) and then describe how networks build connections. (CA NGSS: 1-PS4-4)
Model and describe how people connect to other people, places, information and ideas through a network.
Descriptive Statement:
Information is passed between multiple points (nodes) on a network. The Internet is a network that enables people to connect with other people worldwide through many different points of connection. Students model ways that people communicate, find information, or acquire ideas through a network. Students use a network, such as the internet, to access information from multiple locations or devices. For example, students could utilize a cloud-based platform to access shared documents or note-taking applications for group research projects, and then create a model (e.g., flowchart) to illustrate how this network aids collaboration. (CA CCSS for ELA/Literacy W.K.7, W.1.7, W.2.7) Alternatively, students could design devices that use light or sound to aid communication across distances (e.g., light source to send signals, paper cup and string “telephones,” and a pattern of drum beats) and then describe how networks build connections. (CA NGSS: 1-PS4-4)
Standard Identifier: 3-5.AP.12
Grade Range:
3–5
Concept:
Algorithms & Programming
Subconcept:
Control
Practice(s):
Creating Computational Artifacts (5.2)
Standard:
Create programs that include events, loops, and conditionals.
Descriptive Statement:
Control structures specify the order (sequence) in which instructions are executed within a program and can be combined to support the creation of more complex programs. Events allow portions of a program to run based on a specific action. Conditionals allow for the execution of a portion of code in a program when a certain condition is true. Loops allow for the repetition of a sequence of code multiple times. For example, students could program an interactive map of the United States of America. They could use events to initiate a question when the user clicks on a state and conditionals to check whether the user input is correct. They could use loops to repeat the question until the user answers correctly or to control the length of a "congratulations" scenario that plays after a correct answer. (HSS.5.9) Alternatively, students could write a math fluency game that asks products of two one-digit numbers and then uses a conditional to check whether or not the answer that was entered is correct. They could use a loop to repeatedly ask another question. They could use events to allow the user to click on a green button to play again or a red button to end the game. (CA CCSS for Mathematics 3.OA.7) Additionally, students could create a program as a role-playing game based on a literary work. Loops could be used to animate a character's movement. When reaching a decision point in the story, an event could initiate the user to type a response. A conditional could change the setting or have the story play out differently based on the user input. (CA CCSS for ELA/Literacy RL.5.3)
Create programs that include events, loops, and conditionals.
Descriptive Statement:
Control structures specify the order (sequence) in which instructions are executed within a program and can be combined to support the creation of more complex programs. Events allow portions of a program to run based on a specific action. Conditionals allow for the execution of a portion of code in a program when a certain condition is true. Loops allow for the repetition of a sequence of code multiple times. For example, students could program an interactive map of the United States of America. They could use events to initiate a question when the user clicks on a state and conditionals to check whether the user input is correct. They could use loops to repeat the question until the user answers correctly or to control the length of a "congratulations" scenario that plays after a correct answer. (HSS.5.9) Alternatively, students could write a math fluency game that asks products of two one-digit numbers and then uses a conditional to check whether or not the answer that was entered is correct. They could use a loop to repeatedly ask another question. They could use events to allow the user to click on a green button to play again or a red button to end the game. (CA CCSS for Mathematics 3.OA.7) Additionally, students could create a program as a role-playing game based on a literary work. Loops could be used to animate a character's movement. When reaching a decision point in the story, an event could initiate the user to type a response. A conditional could change the setting or have the story play out differently based on the user input. (CA CCSS for ELA/Literacy RL.5.3)
Standard Identifier: 3-5.CS.1
Grade Range:
3–5
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Communicating About Computing (7.2)
Standard:
Describe how computing devices connect to other components to form a system.
Descriptive Statement:
Computing devices often depend on other devices or components. Students describe physical and wireless connections to other components, including both input devices (e.g., keyboards, sensors, remote controls, microphones) and output devices (e.g., 3D printers, monitors, speakers). For example, students could describe the relationship among the heart, lungs, muscles, blood, and oxygen during physical activity and then compare this to how a mouse, keyboard, printer, and desktop computer connect and interact to allow for input, processing, and output. (P.E.3.4.7) Alternatively, when describing how light reflected from objects enters the eye and is then transferred to the brain to construct a visual image, students could compare this to a computing system that uses programming to construct a visual image when data is transferred and constructed/reconstructed through a keyboard, camera, or other components. (CA NGSS: 4-PS4-2)
Describe how computing devices connect to other components to form a system.
Descriptive Statement:
Computing devices often depend on other devices or components. Students describe physical and wireless connections to other components, including both input devices (e.g., keyboards, sensors, remote controls, microphones) and output devices (e.g., 3D printers, monitors, speakers). For example, students could describe the relationship among the heart, lungs, muscles, blood, and oxygen during physical activity and then compare this to how a mouse, keyboard, printer, and desktop computer connect and interact to allow for input, processing, and output. (P.E.3.4.7) Alternatively, when describing how light reflected from objects enters the eye and is then transferred to the brain to construct a visual image, students could compare this to a computing system that uses programming to construct a visual image when data is transferred and constructed/reconstructed through a keyboard, camera, or other components. (CA NGSS: 4-PS4-2)
Standard Identifier: 3-5.DA.8
Grade Range:
3–5
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Communicating About Computing (7.1)
Standard:
Organize and present collected data visually to highlight relationships and support a claim.
Descriptive Statement:
Raw data has little meaning on its own. Data is often sorted or grouped to provide additional clarity. Organizing data can make interpreting and communicating it to others easier. Data points can be clustered by a number of commonalities. The same data could be manipulated in different ways to emphasize particular aspects or parts of the data set. For example, students could create and administer electronic surveys to their classmates. Possible topics could include favorite books, family heritage, and after school activities. Students could then create digital displays of the data they have collected such as column histogram charts showing the percent of respondents in each grade who selected a particular favorite book. Finally, students could make quantitative statements supported by the data such as which books are more appealing to specific ages of students. As an extension, students could write an opinion piece stating a claim and supporting it with evidence from the data they collected. (CA CCSS for Mathematics 3.MD.3, 4.MD.4, 5.MD.2) (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1) Alternatively, students could represent data in tables and graphical displays to describe weather experienced in the last several years. They could select the type of graphical display based on the specific data represented (e.g., daily high/low temperatures on a scatter plot, average temperatures for a month across years in a column chart). Students could then make a claim about expected weather in future months based on the data. (CA NGSS: 3-ESS2-1)
Organize and present collected data visually to highlight relationships and support a claim.
Descriptive Statement:
Raw data has little meaning on its own. Data is often sorted or grouped to provide additional clarity. Organizing data can make interpreting and communicating it to others easier. Data points can be clustered by a number of commonalities. The same data could be manipulated in different ways to emphasize particular aspects or parts of the data set. For example, students could create and administer electronic surveys to their classmates. Possible topics could include favorite books, family heritage, and after school activities. Students could then create digital displays of the data they have collected such as column histogram charts showing the percent of respondents in each grade who selected a particular favorite book. Finally, students could make quantitative statements supported by the data such as which books are more appealing to specific ages of students. As an extension, students could write an opinion piece stating a claim and supporting it with evidence from the data they collected. (CA CCSS for Mathematics 3.MD.3, 4.MD.4, 5.MD.2) (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1) Alternatively, students could represent data in tables and graphical displays to describe weather experienced in the last several years. They could select the type of graphical display based on the specific data represented (e.g., daily high/low temperatures on a scatter plot, average temperatures for a month across years in a column chart). Students could then make a claim about expected weather in future months based on the data. (CA NGSS: 3-ESS2-1)
Standard Identifier: 3-5.DA.9
Grade Range:
3–5
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Communicating About Computing (7.1)
Standard:
Use data to highlight and/or propose relationships, predict outcomes, or communicate ideas.
Descriptive Statement:
The accuracy of data analysis is related to how the data is represented. Inferences or predictions based on data are less likely to be accurate if the data is insufficient, incomplete, or inaccurate or if the data is incorrect in some way. Additionally, people select aspects and subsets of data to be transformed, organized, and categorized. Students should be able to refer to data when communicating an idea, in order to highlight and/or propose relationships, predict outcomes, highlight different views and/or communicate insights and ideas. For example, students can be provided a scenario in which they are city managers who have a specific amount of funds to improve a city in California. Students can collect data of a city concerning land use, vegetation, wildlife, climate, population density, services and transportation (HSS.4.1.5) to determine and present what area needs to be focused on to improve a problem. Students can compare their data and planned use of funds with peers, clearly communicating or predict outcomes based on data collected. (CA CCCS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could record the temperature at noon each day to show that temperatures are higher in certain months of the year. If temperatures are not recorded on non-school days or are recorded incorrectly, the data would be incomplete and ideas being communicated could be inaccurate. Students may also record the day of the week on which the data was collected, but this would have no relevance to whether temperatures are higher or lower. In order to have sufficient and accurate data on which to communicate the idea, students might use data provided by a governmental weather agency. (CA NGSS: 3-ESS2-1)
Use data to highlight and/or propose relationships, predict outcomes, or communicate ideas.
Descriptive Statement:
The accuracy of data analysis is related to how the data is represented. Inferences or predictions based on data are less likely to be accurate if the data is insufficient, incomplete, or inaccurate or if the data is incorrect in some way. Additionally, people select aspects and subsets of data to be transformed, organized, and categorized. Students should be able to refer to data when communicating an idea, in order to highlight and/or propose relationships, predict outcomes, highlight different views and/or communicate insights and ideas. For example, students can be provided a scenario in which they are city managers who have a specific amount of funds to improve a city in California. Students can collect data of a city concerning land use, vegetation, wildlife, climate, population density, services and transportation (HSS.4.1.5) to determine and present what area needs to be focused on to improve a problem. Students can compare their data and planned use of funds with peers, clearly communicating or predict outcomes based on data collected. (CA CCCS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could record the temperature at noon each day to show that temperatures are higher in certain months of the year. If temperatures are not recorded on non-school days or are recorded incorrectly, the data would be incomplete and ideas being communicated could be inaccurate. Students may also record the day of the week on which the data was collected, but this would have no relevance to whether temperatures are higher or lower. In order to have sufficient and accurate data on which to communicate the idea, students might use data provided by a governmental weather agency. (CA NGSS: 3-ESS2-1)
Showing 1 - 10 of 37 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881