Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 11 - 13 of 13 Standards

Standard Identifier: 9-12S.AP.15

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Control
Practice(s): Recognizing and Defining Computational Problems, Communicating About Computing (3.2, 7.2)

Standard:
Demonstrate the flow of execution of a recursive algorithm.

Descriptive Statement:
Recursion is a powerful problem-solving approach where the problem solution is built on solutions of smaller instances of the same problem. A base case, which returns a result without referencing itself, must be defined, otherwise infinite recursion will occur. Students represent a sequence of calls to a recursive algorithm and show how the process resolves to a solution. For example, students could draw a diagram to illustrate flow of execution by keeping track of parameter and returned values for each recursive call. Alternatively, students could create a video showing the passing of arguments as the recursive algorithm runs.

Standard Identifier: 9-12S.NI.3

Grade Range: 9–12 Specialty
Concept: Networks & the Internet
Subconcept: Network Communication & Organization
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Examine the scalability and reliability of networks, by describing the relationship between routers, switches, servers, topology, and addressing.

Descriptive Statement:
Choice of network topology is determined, in part, by how many devices can be supported and the character of communication needs between devices. Each device is assigned an address that uniquely identifies it on the network. Routers function by comparing addresses to determine how information on the network should reach its desgination. Switches compare addresses to determine which computers will receive information. Students explore and explain how network performance degrades when various factors affect the network. For example, students could use online network simulators to describe how network performance changes when the number of devices increases. Alternatively, students could visualize and describe changes to the distribution of network traffic when a router on the network fails.

Standard Identifier: 9-12S.NI.4

Grade Range: 9–12 Specialty
Concept: Networks & the Internet
Subconcept: Network Communication & Organization
Practice(s): Communicating About Computing (7.2)

Standard:
Explain how the characteristics of the Internet influence the systems developed on it.

Descriptive Statement:
The design of the Internet includes hierarchy and redundancy to help it scale reliably. An end-to-end architecture means that key functions are placed at endpoints in the network (i.e., an Internet user's computer and the server hosting a website) rather than in the middle of the network. Open standards for transmitting information across the Internet help fuel its growth. This design philosophy impacts systems and technologies that integrate with the Internet. Students explain how Internet-based systems depend on these characteristics. For example, students could explain how having common, standard protocols enable products and services from different developers to communicate. Alternatively, students could describe how the end-to-end architecture and redundancy in routing enables Internet users to access information and services even if part of the network is down; the information can still be routed from one end to another through a different path.

Showing 11 - 13 of 13 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881