Computer Science Standards
Results
Showing 1 - 2 of 2 Standards
Standard Identifier: 3-5.IC.22
Grade Range:
3–5
Concept:
Impacts of Computing
Subconcept:
Social Interactions
Practice(s):
Fostering an Inclusive Computing Culture (1.1)
Standard:
Seek and explain the impact of diverse perspectives for the purpose of improving computational artifacts.
Descriptive Statement:
Computing technologies enable global collaboration and sharing of ideas. Students solicit feedback from a diverse group of users and creators and explain how this input improves their computational artifacts. For example, students could seek feedback from classmates via user surveys, in order to create an idea and then make a claim as to how to improve the overall structure and function of their computational artifact. Using the feedback students could write an opinion piece supporting their claim. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1) Alternatively, with guidance from their teacher, students could use video conferencing tools, shared documents, or other online collaborative spaces, such as blogs, wikis, forums, or website comments, to gather and synthesize feedback from individuals and groups about programming projects. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)
Seek and explain the impact of diverse perspectives for the purpose of improving computational artifacts.
Descriptive Statement:
Computing technologies enable global collaboration and sharing of ideas. Students solicit feedback from a diverse group of users and creators and explain how this input improves their computational artifacts. For example, students could seek feedback from classmates via user surveys, in order to create an idea and then make a claim as to how to improve the overall structure and function of their computational artifact. Using the feedback students could write an opinion piece supporting their claim. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1) Alternatively, with guidance from their teacher, students could use video conferencing tools, shared documents, or other online collaborative spaces, such as blogs, wikis, forums, or website comments, to gather and synthesize feedback from individuals and groups about programming projects. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)
Standard Identifier: 9-12S.AP.15
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Control
Practice(s):
Recognizing and Defining Computational Problems, Communicating About Computing (3.2, 7.2)
Standard:
Demonstrate the flow of execution of a recursive algorithm.
Descriptive Statement:
Recursion is a powerful problem-solving approach where the problem solution is built on solutions of smaller instances of the same problem. A base case, which returns a result without referencing itself, must be defined, otherwise infinite recursion will occur. Students represent a sequence of calls to a recursive algorithm and show how the process resolves to a solution. For example, students could draw a diagram to illustrate flow of execution by keeping track of parameter and returned values for each recursive call. Alternatively, students could create a video showing the passing of arguments as the recursive algorithm runs.
Demonstrate the flow of execution of a recursive algorithm.
Descriptive Statement:
Recursion is a powerful problem-solving approach where the problem solution is built on solutions of smaller instances of the same problem. A base case, which returns a result without referencing itself, must be defined, otherwise infinite recursion will occur. Students represent a sequence of calls to a recursive algorithm and show how the process resolves to a solution. For example, students could draw a diagram to illustrate flow of execution by keeping track of parameter and returned values for each recursive call. Alternatively, students could create a video showing the passing of arguments as the recursive algorithm runs.
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881