Computer Science Standards
Results
Showing 1 - 5 of 5 Standards
Standard Identifier: 3-5.CS.1
Grade Range:
3–5
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Communicating About Computing (7.2)
Standard:
Describe how computing devices connect to other components to form a system.
Descriptive Statement:
Computing devices often depend on other devices or components. Students describe physical and wireless connections to other components, including both input devices (e.g., keyboards, sensors, remote controls, microphones) and output devices (e.g., 3D printers, monitors, speakers). For example, students could describe the relationship among the heart, lungs, muscles, blood, and oxygen during physical activity and then compare this to how a mouse, keyboard, printer, and desktop computer connect and interact to allow for input, processing, and output. (P.E.3.4.7) Alternatively, when describing how light reflected from objects enters the eye and is then transferred to the brain to construct a visual image, students could compare this to a computing system that uses programming to construct a visual image when data is transferred and constructed/reconstructed through a keyboard, camera, or other components. (CA NGSS: 4-PS4-2)
Describe how computing devices connect to other components to form a system.
Descriptive Statement:
Computing devices often depend on other devices or components. Students describe physical and wireless connections to other components, including both input devices (e.g., keyboards, sensors, remote controls, microphones) and output devices (e.g., 3D printers, monitors, speakers). For example, students could describe the relationship among the heart, lungs, muscles, blood, and oxygen during physical activity and then compare this to how a mouse, keyboard, printer, and desktop computer connect and interact to allow for input, processing, and output. (P.E.3.4.7) Alternatively, when describing how light reflected from objects enters the eye and is then transferred to the brain to construct a visual image, students could compare this to a computing system that uses programming to construct a visual image when data is transferred and constructed/reconstructed through a keyboard, camera, or other components. (CA NGSS: 4-PS4-2)
Standard Identifier: 9-12.NI.5
Grade Range:
9–12
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Communicating About Computing (7.2)
Standard:
Describe the design characteristics of the Internet.
Descriptive Statement:
The Internet connects devices and networks all over the world. Large-scale coordination occurs among many different machines across multiple paths every time a web page is opened or an image is viewed online. Through the domain name system (DNS), devices on the Internet can look up Internet Protocol (IP) addresses, allowing end-to-end communication between devices. The design decisions that direct the coordination among systems composing the Internet also allow for scalability and reliability. Students factor historical, cultural, and economic decisions in their explanations of the Internet. For example, students could explain how hierarchy in the DNS supports scalability and reliability. Alternatively, students could describe how the redundancy of routing between two nodes on the Internet increases reliability and scales as the Internet grows.
Describe the design characteristics of the Internet.
Descriptive Statement:
The Internet connects devices and networks all over the world. Large-scale coordination occurs among many different machines across multiple paths every time a web page is opened or an image is viewed online. Through the domain name system (DNS), devices on the Internet can look up Internet Protocol (IP) addresses, allowing end-to-end communication between devices. The design decisions that direct the coordination among systems composing the Internet also allow for scalability and reliability. Students factor historical, cultural, and economic decisions in their explanations of the Internet. For example, students could explain how hierarchy in the DNS supports scalability and reliability. Alternatively, students could describe how the redundancy of routing between two nodes on the Internet increases reliability and scales as the Internet grows.
Standard Identifier: 9-12S.AP.15
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Control
Practice(s):
Recognizing and Defining Computational Problems, Communicating About Computing (3.2, 7.2)
Standard:
Demonstrate the flow of execution of a recursive algorithm.
Descriptive Statement:
Recursion is a powerful problem-solving approach where the problem solution is built on solutions of smaller instances of the same problem. A base case, which returns a result without referencing itself, must be defined, otherwise infinite recursion will occur. Students represent a sequence of calls to a recursive algorithm and show how the process resolves to a solution. For example, students could draw a diagram to illustrate flow of execution by keeping track of parameter and returned values for each recursive call. Alternatively, students could create a video showing the passing of arguments as the recursive algorithm runs.
Demonstrate the flow of execution of a recursive algorithm.
Descriptive Statement:
Recursion is a powerful problem-solving approach where the problem solution is built on solutions of smaller instances of the same problem. A base case, which returns a result without referencing itself, must be defined, otherwise infinite recursion will occur. Students represent a sequence of calls to a recursive algorithm and show how the process resolves to a solution. For example, students could draw a diagram to illustrate flow of execution by keeping track of parameter and returned values for each recursive call. Alternatively, students could create a video showing the passing of arguments as the recursive algorithm runs.
Standard Identifier: 9-12S.CS.1
Grade Range:
9–12 Specialty
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Developing and Using Abstractions, Communicating About Computing (4.4, 7.2)
Standard:
Illustrate ways computing systems implement logic through hardware components.
Descriptive Statement:
Computing systems use processors (e.g., a central processing unit or CPU) to execute program instructions. Processors are composed of components that implement the logical or computational operations required by the instructions. AND, OR, and NOT are examples of logic gates. Adders are examples of higher-leveled circuits built using low-level logic gates. Students illustrate how modern computing devices are made up of smaller and simpler components which implement the logic underlying the functionality of a computer processor. At this level, knowledge of how logic gates are constructed is not expected. For example, students could construct truth tables, draw logic circuit diagrams, or use an online logic circuit simulator. Students could explore the interaction of the CPU, RAM, and I/O by labeling a diagram of the von Neumann architecture. Alternatively, students could design higher-level circuits using low-level logic gates (e.g., adders).
Illustrate ways computing systems implement logic through hardware components.
Descriptive Statement:
Computing systems use processors (e.g., a central processing unit or CPU) to execute program instructions. Processors are composed of components that implement the logical or computational operations required by the instructions. AND, OR, and NOT are examples of logic gates. Adders are examples of higher-leveled circuits built using low-level logic gates. Students illustrate how modern computing devices are made up of smaller and simpler components which implement the logic underlying the functionality of a computer processor. At this level, knowledge of how logic gates are constructed is not expected. For example, students could construct truth tables, draw logic circuit diagrams, or use an online logic circuit simulator. Students could explore the interaction of the CPU, RAM, and I/O by labeling a diagram of the von Neumann architecture. Alternatively, students could design higher-level circuits using low-level logic gates (e.g., adders).
Standard Identifier: 9-12S.NI.4
Grade Range:
9–12 Specialty
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Communicating About Computing (7.2)
Standard:
Explain how the characteristics of the Internet influence the systems developed on it.
Descriptive Statement:
The design of the Internet includes hierarchy and redundancy to help it scale reliably. An end-to-end architecture means that key functions are placed at endpoints in the network (i.e., an Internet user's computer and the server hosting a website) rather than in the middle of the network. Open standards for transmitting information across the Internet help fuel its growth. This design philosophy impacts systems and technologies that integrate with the Internet. Students explain how Internet-based systems depend on these characteristics. For example, students could explain how having common, standard protocols enable products and services from different developers to communicate. Alternatively, students could describe how the end-to-end architecture and redundancy in routing enables Internet users to access information and services even if part of the network is down; the information can still be routed from one end to another through a different path.
Explain how the characteristics of the Internet influence the systems developed on it.
Descriptive Statement:
The design of the Internet includes hierarchy and redundancy to help it scale reliably. An end-to-end architecture means that key functions are placed at endpoints in the network (i.e., an Internet user's computer and the server hosting a website) rather than in the middle of the network. Open standards for transmitting information across the Internet help fuel its growth. This design philosophy impacts systems and technologies that integrate with the Internet. Students explain how Internet-based systems depend on these characteristics. For example, students could explain how having common, standard protocols enable products and services from different developers to communicate. Alternatively, students could describe how the end-to-end architecture and redundancy in routing enables Internet users to access information and services even if part of the network is down; the information can still be routed from one end to another through a different path.
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881