Computer Science Standards
Remove this criterion from the search
Control
Remove this criterion from the search
Devices
Remove this criterion from the search
Hardware & Software
Remove this criterion from the search
Network Communication & Organization
Remove this criterion from the search
Safety, Law, & Ethics
Remove this criterion from the search
Troubleshooting
Remove this criterion from the search
Add a Practice
Remove this criterion from the search
Collaborating Around Computing
Remove this criterion from the search
Recognizing and Defining Computational Problems
Remove this criterion from the search
Developing and Using Abstractions
Remove this criterion from the search
Creating Computational Artifacts
Remove this criterion from the search
Testing and Refining Computational Artifacts
Results
Showing 1 - 10 of 22 Standards
Standard Identifier: K-2.AP.12
Grade Range:
K–2
Concept:
Algorithms & Programming
Subconcept:
Control
Practice(s):
Creating Computational Artifacts (5.2)
Standard:
Create programs with sequences of commands and simple loops, to express ideas or address a problem.
Descriptive Statement:
People create programs by composing sequences of commands that specify the precise order in which instructions should be executed. Loops enable programs to repeat a sequence of commands multiple times. For example, students could follow simple movements in response to oral instructions. Students could then create a simple sequence of movement commands in response to a given problem (e.g., In how many ways can you travel from point A to point B?) and represent it as a computer program, using loops to repeat commands. (VAPA Dance K.1.4, 1.2.3, 1.2.5, 1.2.8, 2.2.1, 2.2.2, 2.2.3) Alternatively, on a mat with many different CVC words, students could program robots to move to words with a similar vowel sound. Students could look for multiple ways to solve the problem and simplify their solution by incorporating loops. (CA CCSS for ELA/Literacy RF.K.2.D, RF.1.2.C)
Create programs with sequences of commands and simple loops, to express ideas or address a problem.
Descriptive Statement:
People create programs by composing sequences of commands that specify the precise order in which instructions should be executed. Loops enable programs to repeat a sequence of commands multiple times. For example, students could follow simple movements in response to oral instructions. Students could then create a simple sequence of movement commands in response to a given problem (e.g., In how many ways can you travel from point A to point B?) and represent it as a computer program, using loops to repeat commands. (VAPA Dance K.1.4, 1.2.3, 1.2.5, 1.2.8, 2.2.1, 2.2.2, 2.2.3) Alternatively, on a mat with many different CVC words, students could program robots to move to words with a similar vowel sound. Students could look for multiple ways to solve the problem and simplify their solution by incorporating loops. (CA CCSS for ELA/Literacy RF.K.2.D, RF.1.2.C)
Standard Identifier: K-2.CS.3
Grade Range:
K–2
Concept:
Computing Systems
Subconcept:
Troubleshooting
Practice(s):
Testing and Refining Computational Artifacts, Communicating About Computing (6.2, 7.2)
Standard:
Describe basic hardware and software problems using accurate terminology.
Descriptive Statement:
Problems with computing systems have different causes. Accurate description of the problem aids users in finding solutions. Students communicate a problem with accurate terminology (e.g., when an app or program is not working as expected, a device will not turn on, the sound does not work, etc.). Students at this level do not need to understand the causes of hardware and software problems. For example, students could sort hardware and software terms on a word wall, and refer to the word wall when describing problems using "I see..." statements (e.g., "I see the pointer on the screen is missing", "I see that the computer will not turn on"). (CA CCSS for ELA/Literacy L.K.5.A, L.1.5.A, SL K.5, SL1.5, SL 2.5) (Visual Arts Kinder 5.2) Alternatively, students could use appropriate terminology during collaborative conversations as they learn to debug, troubleshoot, collaborate, and think critically with technology. (CA CCSS for ELA/Literacy SL.K.1, SL.1.1, SL.2.1)
Describe basic hardware and software problems using accurate terminology.
Descriptive Statement:
Problems with computing systems have different causes. Accurate description of the problem aids users in finding solutions. Students communicate a problem with accurate terminology (e.g., when an app or program is not working as expected, a device will not turn on, the sound does not work, etc.). Students at this level do not need to understand the causes of hardware and software problems. For example, students could sort hardware and software terms on a word wall, and refer to the word wall when describing problems using "I see..." statements (e.g., "I see the pointer on the screen is missing", "I see that the computer will not turn on"). (CA CCSS for ELA/Literacy L.K.5.A, L.1.5.A, SL K.5, SL1.5, SL 2.5) (Visual Arts Kinder 5.2) Alternatively, students could use appropriate terminology during collaborative conversations as they learn to debug, troubleshoot, collaborate, and think critically with technology. (CA CCSS for ELA/Literacy SL.K.1, SL.1.1, SL.2.1)
Standard Identifier: K-2.IC.20
Grade Range:
K–2
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Describe approaches and rationales for keeping login information private, and for logging off of devices appropriately.
Descriptive Statement:
People use computing technology in ways that can help or hurt themselves and/or others. Harmful behaviors, such as sharing passwords or other private information and leaving public devices logged in should be recognized and avoided. Students keep login information private, log off of devices appropriately, and discuss the importance of these practices. For example, while learning about individual responsibility and citizenship, students could create a "privacy folder" to store login information, and keep this folder in a secure location that is not easily seen and accessed by classmates. Students could discuss the relative benefits and impacts of choosing to store passwords in a folder online versus on paper. They could also describe how using the same login and password across many systems and apps could lead to significant security issues and requires even more vigilance in maintaining security. (HSS K.1) Alternatively, students can write an informational piece regarding the importance of keeping login information private and logging off of public devices. (CA CCSS for ELA/Literacy W.K.2, W.1.2, W.2.2)
Describe approaches and rationales for keeping login information private, and for logging off of devices appropriately.
Descriptive Statement:
People use computing technology in ways that can help or hurt themselves and/or others. Harmful behaviors, such as sharing passwords or other private information and leaving public devices logged in should be recognized and avoided. Students keep login information private, log off of devices appropriately, and discuss the importance of these practices. For example, while learning about individual responsibility and citizenship, students could create a "privacy folder" to store login information, and keep this folder in a secure location that is not easily seen and accessed by classmates. Students could discuss the relative benefits and impacts of choosing to store passwords in a folder online versus on paper. They could also describe how using the same login and password across many systems and apps could lead to significant security issues and requires even more vigilance in maintaining security. (HSS K.1) Alternatively, students can write an informational piece regarding the importance of keeping login information private and logging off of public devices. (CA CCSS for ELA/Literacy W.K.2, W.1.2, W.2.2)
Standard Identifier: K-2.NI.4
Grade Range:
K–2
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Model and describe how people connect to other people, places, information and ideas through a network.
Descriptive Statement:
Information is passed between multiple points (nodes) on a network. The Internet is a network that enables people to connect with other people worldwide through many different points of connection. Students model ways that people communicate, find information, or acquire ideas through a network. Students use a network, such as the internet, to access information from multiple locations or devices. For example, students could utilize a cloud-based platform to access shared documents or note-taking applications for group research projects, and then create a model (e.g., flowchart) to illustrate how this network aids collaboration. (CA CCSS for ELA/Literacy W.K.7, W.1.7, W.2.7) Alternatively, students could design devices that use light or sound to aid communication across distances (e.g., light source to send signals, paper cup and string “telephones,” and a pattern of drum beats) and then describe how networks build connections. (CA NGSS: 1-PS4-4)
Model and describe how people connect to other people, places, information and ideas through a network.
Descriptive Statement:
Information is passed between multiple points (nodes) on a network. The Internet is a network that enables people to connect with other people worldwide through many different points of connection. Students model ways that people communicate, find information, or acquire ideas through a network. Students use a network, such as the internet, to access information from multiple locations or devices. For example, students could utilize a cloud-based platform to access shared documents or note-taking applications for group research projects, and then create a model (e.g., flowchart) to illustrate how this network aids collaboration. (CA CCSS for ELA/Literacy W.K.7, W.1.7, W.2.7) Alternatively, students could design devices that use light or sound to aid communication across distances (e.g., light source to send signals, paper cup and string “telephones,” and a pattern of drum beats) and then describe how networks build connections. (CA NGSS: 1-PS4-4)
Standard Identifier: 3-5.AP.12
Grade Range:
3–5
Concept:
Algorithms & Programming
Subconcept:
Control
Practice(s):
Creating Computational Artifacts (5.2)
Standard:
Create programs that include events, loops, and conditionals.
Descriptive Statement:
Control structures specify the order (sequence) in which instructions are executed within a program and can be combined to support the creation of more complex programs. Events allow portions of a program to run based on a specific action. Conditionals allow for the execution of a portion of code in a program when a certain condition is true. Loops allow for the repetition of a sequence of code multiple times. For example, students could program an interactive map of the United States of America. They could use events to initiate a question when the user clicks on a state and conditionals to check whether the user input is correct. They could use loops to repeat the question until the user answers correctly or to control the length of a "congratulations" scenario that plays after a correct answer. (HSS.5.9) Alternatively, students could write a math fluency game that asks products of two one-digit numbers and then uses a conditional to check whether or not the answer that was entered is correct. They could use a loop to repeatedly ask another question. They could use events to allow the user to click on a green button to play again or a red button to end the game. (CA CCSS for Mathematics 3.OA.7) Additionally, students could create a program as a role-playing game based on a literary work. Loops could be used to animate a character's movement. When reaching a decision point in the story, an event could initiate the user to type a response. A conditional could change the setting or have the story play out differently based on the user input. (CA CCSS for ELA/Literacy RL.5.3)
Create programs that include events, loops, and conditionals.
Descriptive Statement:
Control structures specify the order (sequence) in which instructions are executed within a program and can be combined to support the creation of more complex programs. Events allow portions of a program to run based on a specific action. Conditionals allow for the execution of a portion of code in a program when a certain condition is true. Loops allow for the repetition of a sequence of code multiple times. For example, students could program an interactive map of the United States of America. They could use events to initiate a question when the user clicks on a state and conditionals to check whether the user input is correct. They could use loops to repeat the question until the user answers correctly or to control the length of a "congratulations" scenario that plays after a correct answer. (HSS.5.9) Alternatively, students could write a math fluency game that asks products of two one-digit numbers and then uses a conditional to check whether or not the answer that was entered is correct. They could use a loop to repeatedly ask another question. They could use events to allow the user to click on a green button to play again or a red button to end the game. (CA CCSS for Mathematics 3.OA.7) Additionally, students could create a program as a role-playing game based on a literary work. Loops could be used to animate a character's movement. When reaching a decision point in the story, an event could initiate the user to type a response. A conditional could change the setting or have the story play out differently based on the user input. (CA CCSS for ELA/Literacy RL.5.3)
Standard Identifier: 3-5.CS.2
Grade Range:
3–5
Concept:
Computing Systems
Subconcept:
Hardware & Software
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Demonstrate how computer hardware and software work together as a system to accomplish tasks.
Descriptive Statement:
Hardware and software are both needed to accomplish tasks with a computing device. Students create a model to illustrate ways in which hardware and software work as a system. Students could draw a model on paper or in a drawing program, program an animation to demonstrate it, or demonstrate it by acting this out in some way. At this level, a model should only include the basic elements of a computer system, such as input, output, processor, sensors, and storage. For example, students could create a diagram or flow chart to indicate how a keyboard, desktop computer, monitor, and word processing software interact with each other. The keyboard (hardware) detects a key press, which the operating system and word processing application (software) displays as a new character that has been inserted into the document and is visible through the monitor (hardware). Students could also create a model by acting out the interactions of these different hardware and software components. Alternatively, when describing that animals and people receive different types of information through their senses, process the information in their brain, and respond to the information in different ways, students could compare this to the interaction of how the information traveling through a computer from mouse to processor are similar to signals sent through the nervous system telling our brain about the world around us to prompt responses. (CA NGSS: 4-LS1-2)
Demonstrate how computer hardware and software work together as a system to accomplish tasks.
Descriptive Statement:
Hardware and software are both needed to accomplish tasks with a computing device. Students create a model to illustrate ways in which hardware and software work as a system. Students could draw a model on paper or in a drawing program, program an animation to demonstrate it, or demonstrate it by acting this out in some way. At this level, a model should only include the basic elements of a computer system, such as input, output, processor, sensors, and storage. For example, students could create a diagram or flow chart to indicate how a keyboard, desktop computer, monitor, and word processing software interact with each other. The keyboard (hardware) detects a key press, which the operating system and word processing application (software) displays as a new character that has been inserted into the document and is visible through the monitor (hardware). Students could also create a model by acting out the interactions of these different hardware and software components. Alternatively, when describing that animals and people receive different types of information through their senses, process the information in their brain, and respond to the information in different ways, students could compare this to the interaction of how the information traveling through a computer from mouse to processor are similar to signals sent through the nervous system telling our brain about the world around us to prompt responses. (CA NGSS: 4-LS1-2)
Standard Identifier: 3-5.CS.3
Grade Range:
3–5
Concept:
Computing Systems
Subconcept:
Troubleshooting
Practice(s):
Testing and Refining Computational Artifacts (6.2)
Standard:
Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies.
Descriptive Statement:
Although computing systems vary, common troubleshooting strategies can be used across many different systems. Students use troubleshooting strategies to identify problems that could include a device not responding, lacking power, lacking a network connection, an app crashing, not playing sounds, or password entry not working. Students use and develop various solutions to address these problems. Solutions may include rebooting the device, checking for power, checking network availability, opening and closing an app, making sure speakers are turned on or headphones are plugged in, and making sure that the caps lock key is not on. For example, students could prepare for and participate in a collaborative discussion in which they identify and list computing system problems and then describe common successful fixes. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could write informative/explanatory texts, create a poster, or use another medium of communication to examine common troubleshooting strategies and convey these ideas and information clearly. (CA CCSS for ELA/Literacy W.3.2, W.4.2, W.5.2)
Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies.
Descriptive Statement:
Although computing systems vary, common troubleshooting strategies can be used across many different systems. Students use troubleshooting strategies to identify problems that could include a device not responding, lacking power, lacking a network connection, an app crashing, not playing sounds, or password entry not working. Students use and develop various solutions to address these problems. Solutions may include rebooting the device, checking for power, checking network availability, opening and closing an app, making sure speakers are turned on or headphones are plugged in, and making sure that the caps lock key is not on. For example, students could prepare for and participate in a collaborative discussion in which they identify and list computing system problems and then describe common successful fixes. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could write informative/explanatory texts, create a poster, or use another medium of communication to examine common troubleshooting strategies and convey these ideas and information clearly. (CA CCSS for ELA/Literacy W.3.2, W.4.2, W.5.2)
Standard Identifier: 3-5.NI.4
Grade Range:
3–5
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Model how information is broken down into smaller pieces, transmitted as packets through multiple devices over networks and the Internet, and reassembled at the destination.
Descriptive Statement:
Information is sent and received over physical or wireless paths. It is broken down into smaller pieces called packets, which are sent independently and reassembled at the destination. Students demonstrate their understanding of this flow of information by, for instance, drawing a model of the way packets are transmitted, programming an animation to show how packets are transmitted, or demonstrating this through an unplugged activity in which they physically act this out. For example, students could design a structure using building blocks or other materials with the intention of re-engineering it in another location, just as early Americans did after the intercontinental railroad was constructed in the 1850s (HSS.4.4.1, 4.4.2). Students could deconstruct the designed structure, place materials into specific containers (or plastic bags/brown paper bags/etc.), and develop instructions on how to recreate the structure once each container arrives at its intended destination. (CA NGSS: 3-5-ETS1) For example, students could cut up a map of the United States by state lines. Students could then place the states in envelopes and transmit the "packets" through a physical network, represented by multiple students spreading out in arms reach of at least two others. At the destination, the student who receives the packets resassembles the individual states back into a map of the United States. (HSS 5.9) Alternatively, students could perform a similar activity with a diatonic scale, cutting the scale into individual notes. Each note, in order, should be placed into a numbered envelope based on its location on the scale. These envelopes can be transmitted across the network of students and reassembled at the destination. (VAPA Music 4.1.2)
Model how information is broken down into smaller pieces, transmitted as packets through multiple devices over networks and the Internet, and reassembled at the destination.
Descriptive Statement:
Information is sent and received over physical or wireless paths. It is broken down into smaller pieces called packets, which are sent independently and reassembled at the destination. Students demonstrate their understanding of this flow of information by, for instance, drawing a model of the way packets are transmitted, programming an animation to show how packets are transmitted, or demonstrating this through an unplugged activity in which they physically act this out. For example, students could design a structure using building blocks or other materials with the intention of re-engineering it in another location, just as early Americans did after the intercontinental railroad was constructed in the 1850s (HSS.4.4.1, 4.4.2). Students could deconstruct the designed structure, place materials into specific containers (or plastic bags/brown paper bags/etc.), and develop instructions on how to recreate the structure once each container arrives at its intended destination. (CA NGSS: 3-5-ETS1) For example, students could cut up a map of the United States by state lines. Students could then place the states in envelopes and transmit the "packets" through a physical network, represented by multiple students spreading out in arms reach of at least two others. At the destination, the student who receives the packets resassembles the individual states back into a map of the United States. (HSS 5.9) Alternatively, students could perform a similar activity with a diatonic scale, cutting the scale into individual notes. Each note, in order, should be placed into a numbered envelope based on its location on the scale. These envelopes can be transmitted across the network of students and reassembled at the destination. (VAPA Music 4.1.2)
Standard Identifier: 6-8.AP.12
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Control
Practice(s):
Creating Computational Artifacts (5.1, 5.2)
Standard:
Design and iteratively develop programs that combine control structures and use compound conditions.
Descriptive Statement:
Control structures can be combined in many ways. Nested loops are loops placed within loops, and nested conditionals allow the result of one conditional to lead to another. Compound conditions combine two or more conditions in a logical relationship (e.g., using AND, OR, and NOT). Students appropriately use control structures to perform repetitive and selection tasks. For example, when programming an interactive story, students could use a compound conditional within a loop to unlock a door only if a character has a key AND is touching the door. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3) Alternatively, students could use compound conditionals when writing a program to test whether two points lie along the line defined by a particular linear function. (CA CCSS for Mathematics 8.EE.7) Additionally, students could use nested loops to program a character to do the "chicken dance" by opening and closing the beak, flapping the wings, shaking the hips, and clapping four times each; this dance "chorus" is then repeated several times in its entirety.
Design and iteratively develop programs that combine control structures and use compound conditions.
Descriptive Statement:
Control structures can be combined in many ways. Nested loops are loops placed within loops, and nested conditionals allow the result of one conditional to lead to another. Compound conditions combine two or more conditions in a logical relationship (e.g., using AND, OR, and NOT). Students appropriately use control structures to perform repetitive and selection tasks. For example, when programming an interactive story, students could use a compound conditional within a loop to unlock a door only if a character has a key AND is touching the door. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3) Alternatively, students could use compound conditionals when writing a program to test whether two points lie along the line defined by a particular linear function. (CA CCSS for Mathematics 8.EE.7) Additionally, students could use nested loops to program a character to do the "chicken dance" by opening and closing the beak, flapping the wings, shaking the hips, and clapping four times each; this dance "chorus" is then repeated several times in its entirety.
Standard Identifier: 6-8.CS.1
Grade Range:
6–8
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Fostering an Inclusive Computing Culture, Recognizing and Defining Computational Problems (1.2, 3.3)
Standard:
Design modifications to computing devices in order to improve the ways users interact with the devices.
Descriptive Statement:
Computing devices can extend the abilities of humans, but design considerations are critical to make these devices useful. Students suggest modifications to the design of computing devices and describe how these modifications would improve usabilty. For example, students could create a design for the screen layout of a smartphone that is more usable by people with vision impairments or hand tremors. They might also design how to use the device as a scanner to convert text to speech. Alternatively, students could design modifications for a student ID card reader to increase usability by planning for scanner height, need of scanner device to be connected physically to the computer, robustness of scanner housing, and choice of use of RFID or line of sight scanners. (CA NGSS: MS-ETS1-1)
Design modifications to computing devices in order to improve the ways users interact with the devices.
Descriptive Statement:
Computing devices can extend the abilities of humans, but design considerations are critical to make these devices useful. Students suggest modifications to the design of computing devices and describe how these modifications would improve usabilty. For example, students could create a design for the screen layout of a smartphone that is more usable by people with vision impairments or hand tremors. They might also design how to use the device as a scanner to convert text to speech. Alternatively, students could design modifications for a student ID card reader to increase usability by planning for scanner height, need of scanner device to be connected physically to the computer, robustness of scanner housing, and choice of use of RFID or line of sight scanners. (CA NGSS: MS-ETS1-1)
Showing 1 - 10 of 22 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881