Computer Science Standards
Results
Showing 1 - 10 of 20 Standards
Standard Identifier: K-2.AP.10
Grade Range:
K–2
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.2, 4.4)
Standard:
Model daily processes by creating and following algorithms to complete tasks.
Descriptive Statement:
Algorithms are sequences of instructions that describe how to complete a specific task. Students create algorithms that reflect simple life tasks inside and outside of the classroom. For example, students could create algorithms to represent daily routines for getting ready for school, transitioning through center rotations, eating lunch, and putting away art materials. Students could then write a narrative sequence of events. (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3) Alternatively, students could create a game or a dance with a specific set of movements to reach an intentional goal or objective. (P.E K.2, 1.2, 2.2) Additionally, students could create a map of their neighborhood and give step-by-step directions of how they get to school. (HSS.K.4, 1.2, 2.2)
Model daily processes by creating and following algorithms to complete tasks.
Descriptive Statement:
Algorithms are sequences of instructions that describe how to complete a specific task. Students create algorithms that reflect simple life tasks inside and outside of the classroom. For example, students could create algorithms to represent daily routines for getting ready for school, transitioning through center rotations, eating lunch, and putting away art materials. Students could then write a narrative sequence of events. (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3) Alternatively, students could create a game or a dance with a specific set of movements to reach an intentional goal or objective. (P.E K.2, 1.2, 2.2) Additionally, students could create a map of their neighborhood and give step-by-step directions of how they get to school. (HSS.K.4, 1.2, 2.2)
Standard Identifier: K-2.IC.18
Grade Range:
K–2
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Compare how people lived and worked before and after the adoption of new computing technologies.
Descriptive Statement:
Computing technologies have changed the way people live and work. Students describe the positive and negative impacts of these changes. For example, as a class, students could create a timeline that includes advancements in computing technologies. Each student could then choose an advancement from the timeline and make a graphic organizer noting how people's lives were different before and after its introduction into society. Student responses could include: In the past, if students wanted to read about a topic, they needed access to a library to find a book about it. Today, students can view and read information on the Internet about a topic or they can download e-books about it directly to a device. Such information may be available in more than one language and could be read to a student, allowing for great accessibility. (HSS.K.6.3) Alternatively, students could retell or dramatize stories, myths, and fairy tales from two distinct time periods before and after a particular computing technology had been introduced. For example, the setting of one story could take place before smartphones had been invented, while a second setting could take place with smartphones in use by characters in the story. Students could note the positive and negative aspects of smartphones on the daily lives of the characters in the story. (VAPA Theatre Arts K.3.1, K.3.2, 1.2.2, 2.3.2) (CA CCSS for ELA/Literacy RL.K.2, RL.K.9, RL.1., RL.1.9, RL.2.2, RL.2.9)
Compare how people lived and worked before and after the adoption of new computing technologies.
Descriptive Statement:
Computing technologies have changed the way people live and work. Students describe the positive and negative impacts of these changes. For example, as a class, students could create a timeline that includes advancements in computing technologies. Each student could then choose an advancement from the timeline and make a graphic organizer noting how people's lives were different before and after its introduction into society. Student responses could include: In the past, if students wanted to read about a topic, they needed access to a library to find a book about it. Today, students can view and read information on the Internet about a topic or they can download e-books about it directly to a device. Such information may be available in more than one language and could be read to a student, allowing for great accessibility. (HSS.K.6.3) Alternatively, students could retell or dramatize stories, myths, and fairy tales from two distinct time periods before and after a particular computing technology had been introduced. For example, the setting of one story could take place before smartphones had been invented, while a second setting could take place with smartphones in use by characters in the story. Students could note the positive and negative aspects of smartphones on the daily lives of the characters in the story. (VAPA Theatre Arts K.3.1, K.3.2, 1.2.2, 2.3.2) (CA CCSS for ELA/Literacy RL.K.2, RL.K.9, RL.1., RL.1.9, RL.2.2, RL.2.9)
Standard Identifier: 3-5.AP.10
Grade Range:
3–5
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Recognizing and Defining Computational Problems, Testing and Refining Computational Artifacts (3.3, 6.3)
Standard:
Compare and refine multiple algorithms for the same task and determine which is the most appropriate.
Descriptive Statement:
Different algorithms can achieve the same result, though sometimes one algorithm might be more appropriate for a specific solution. Students examine different ways to solve the same task and decide which would be the better solution for the specific scenario. For example, students could use a map and create multiple algorithms to model the early land and sea routes to and from European settlements in California. They could then compare and refine their algorithms to reflect faster travel times, shorter distances, or avoid specific characteristics, such as mountains, deserts, ocean currents, and wind patterns. (HSS.4.2.2) Alternatively, students could identify multiple algorithms for decomposing a fraction into a sum of fractions with the same denominator and record each decomposition with an equation (e.g., 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8). Students could then select the most efficient algorithm (e.g., fewest number of steps). (CA CCSS for Mathematics 4.NF.3b) Additionally, students could compare algorithms that describe how to get ready for school and modify them for supporting different goals including having time to care for a pet, being able to talk with a friend before classes start, or taking a longer route to school to accompany a younger sibling to their school first. Students could then write an opinion piece, justifying with reasons their selected algorithm is most appropriate. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)
Compare and refine multiple algorithms for the same task and determine which is the most appropriate.
Descriptive Statement:
Different algorithms can achieve the same result, though sometimes one algorithm might be more appropriate for a specific solution. Students examine different ways to solve the same task and decide which would be the better solution for the specific scenario. For example, students could use a map and create multiple algorithms to model the early land and sea routes to and from European settlements in California. They could then compare and refine their algorithms to reflect faster travel times, shorter distances, or avoid specific characteristics, such as mountains, deserts, ocean currents, and wind patterns. (HSS.4.2.2) Alternatively, students could identify multiple algorithms for decomposing a fraction into a sum of fractions with the same denominator and record each decomposition with an equation (e.g., 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8). Students could then select the most efficient algorithm (e.g., fewest number of steps). (CA CCSS for Mathematics 4.NF.3b) Additionally, students could compare algorithms that describe how to get ready for school and modify them for supporting different goals including having time to care for a pet, being able to talk with a friend before classes start, or taking a longer route to school to accompany a younger sibling to their school first. Students could then write an opinion piece, justifying with reasons their selected algorithm is most appropriate. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)
Standard Identifier: 3-5.IC.20
Grade Range:
3–5
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Discuss computing technologies that have changed the world, and express how those technologies influence, and are influenced by, cultural practices.
Descriptive Statement:
New computing technologies are created and existing technologies are modified for many reasons, including to increase their benefits, decrease their risks, and meet societal needs. Students, with guidance from their teacher, discuss topics that relate to the history of computing technologies and changes in the world due to these technologies. Topics could be based on current news content, such as robotics, wireless Internet, mobile computing devices, GPS systems, wearable computing, and how social media has influenced social and political changes. For example, students could conduct research in computing technologies that impact daily life such as self-driving cars. They engage in a collaborative discussion describing impacts of these advancements (e.g., self-driving cars could reduce crashes and decrease traffic, but there is a cost barrier to purchasing them). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7, SL.3.1, SL.4.1, SL.5.1) Alternatively, students could discuss how technological advancements affected the entertainment industry and then compare and contrast the impacts on audiences. For instance, people with access to high-speed Internet may be able to choose to utilize streaming media (which may cost less than traditional media options), but those in rural areas may not have the same access and be able to reap those benefits. (VAPA Theatre Arts 4.3.2, 4.4.2)
Discuss computing technologies that have changed the world, and express how those technologies influence, and are influenced by, cultural practices.
Descriptive Statement:
New computing technologies are created and existing technologies are modified for many reasons, including to increase their benefits, decrease their risks, and meet societal needs. Students, with guidance from their teacher, discuss topics that relate to the history of computing technologies and changes in the world due to these technologies. Topics could be based on current news content, such as robotics, wireless Internet, mobile computing devices, GPS systems, wearable computing, and how social media has influenced social and political changes. For example, students could conduct research in computing technologies that impact daily life such as self-driving cars. They engage in a collaborative discussion describing impacts of these advancements (e.g., self-driving cars could reduce crashes and decrease traffic, but there is a cost barrier to purchasing them). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7, SL.3.1, SL.4.1, SL.5.1) Alternatively, students could discuss how technological advancements affected the entertainment industry and then compare and contrast the impacts on audiences. For instance, people with access to high-speed Internet may be able to choose to utilize streaming media (which may cost less than traditional media options), but those in rural areas may not have the same access and be able to reap those benefits. (VAPA Theatre Arts 4.3.2, 4.4.2)
Standard Identifier: 3-5.IC.21
Grade Range:
3–5
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Fostering an Inclusive Computing Culture (1.2)
Standard:
Propose ways to improve the accessibility and usability of technology products for the diverse needs and wants of users.
Descriptive Statement:
The development and modification of computing technology is driven by people’s needs and wants and can affect groups differently. Students anticipate the needs and wants of diverse end users and propose ways to improve access and usability of technology, with consideration of potential perspectives of users with different backgrounds, ability levels, points of view, and disabilities. For example, students could research a wide variety of disabilities that would limit the use of traditional computational tools for the creation of multimedia artifacts, including digital images, songs, and videos. Students could then brainstorm and propose new software that would allow students that are limited by the disabilities to create similar artifacts in new ways (e.g., graphical display of music for the deaf, the sonification of images for visually impaired students, voice input for those that are unable to use traditional input like the mouse and the keyboard). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7) Alternatively, as they anticipate unique user needs, students may consider using both speech and text to convey information in a game. They may also wish to vary the types of programs they create, knowing that not everyone shares their own tastes. (CA NGSS: 3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)
Propose ways to improve the accessibility and usability of technology products for the diverse needs and wants of users.
Descriptive Statement:
The development and modification of computing technology is driven by people’s needs and wants and can affect groups differently. Students anticipate the needs and wants of diverse end users and propose ways to improve access and usability of technology, with consideration of potential perspectives of users with different backgrounds, ability levels, points of view, and disabilities. For example, students could research a wide variety of disabilities that would limit the use of traditional computational tools for the creation of multimedia artifacts, including digital images, songs, and videos. Students could then brainstorm and propose new software that would allow students that are limited by the disabilities to create similar artifacts in new ways (e.g., graphical display of music for the deaf, the sonification of images for visually impaired students, voice input for those that are unable to use traditional input like the mouse and the keyboard). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7) Alternatively, as they anticipate unique user needs, students may consider using both speech and text to convey information in a game. They may also wish to vary the types of programs they create, knowing that not everyone shares their own tastes. (CA NGSS: 3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)
Standard Identifier: 6-8.AP.10
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Developing and Using Abstractions (4.1, 4.4)
Standard:
Use flowcharts and/or pseudocode to design and illustrate algorithms that solve complex problems.
Descriptive Statement:
Complex problems are problems that would be difficult for students to solve without breaking them down into multiple steps. Flowcharts and pseudocode are used to design and illustrate the breakdown of steps in an algorithm. Students design and illustrate algorithms using pseudocode and/or flowcharts that organize and sequence the breakdown of steps for solving complex problems. For example, students might use a flowchart to illustrate an algorithm that produces a recommendation for purchasing sneakers based on inputs such as size, colors, brand, comfort, and cost. Alternatively, students could write pseudocode to express an algorithm for suggesting their outfit for the day, based on inputs such as the weather, color preferences, and day of the week.
Use flowcharts and/or pseudocode to design and illustrate algorithms that solve complex problems.
Descriptive Statement:
Complex problems are problems that would be difficult for students to solve without breaking them down into multiple steps. Flowcharts and pseudocode are used to design and illustrate the breakdown of steps in an algorithm. Students design and illustrate algorithms using pseudocode and/or flowcharts that organize and sequence the breakdown of steps for solving complex problems. For example, students might use a flowchart to illustrate an algorithm that produces a recommendation for purchasing sneakers based on inputs such as size, colors, brand, comfort, and cost. Alternatively, students could write pseudocode to express an algorithm for suggesting their outfit for the day, based on inputs such as the weather, color preferences, and day of the week.
Standard Identifier: 6-8.IC.20
Grade Range:
6–8
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Communicating About Computing (7.2)
Standard:
Compare tradeoffs associated with computing technologies that affect people's everyday activities and career options.
Descriptive Statement:
Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use computing technologies have tradeoffs. Students consider current events related to broad ideas, including privacy, communication, and automation. For example, students could compare and contrast the impacts of computing technologies with the impacts of other systems developed throughout history such as the Pony Express and US Postal System. (HSS.7.8.4) Alternatively, students could identify tradeoffs for both personal and professional uses of a variety of computing technologies. For instance, driverless cars can increase convenience and reduce accidents, but they may be susceptible to hacking. The emerging industry will reduce the number of taxi and shared-ride drivers, but may create more software engineering and cybersecurity jobs.
Compare tradeoffs associated with computing technologies that affect people's everyday activities and career options.
Descriptive Statement:
Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use computing technologies have tradeoffs. Students consider current events related to broad ideas, including privacy, communication, and automation. For example, students could compare and contrast the impacts of computing technologies with the impacts of other systems developed throughout history such as the Pony Express and US Postal System. (HSS.7.8.4) Alternatively, students could identify tradeoffs for both personal and professional uses of a variety of computing technologies. For instance, driverless cars can increase convenience and reduce accidents, but they may be susceptible to hacking. The emerging industry will reduce the number of taxi and shared-ride drivers, but may create more software engineering and cybersecurity jobs.
Standard Identifier: 6-8.IC.21
Grade Range:
6–8
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Fostering an Inclusive Computing Culture (1.2)
Standard:
Discuss issues of bias and accessibility in the design of existing technologies.
Descriptive Statement:
Computing technologies should support users of many backgrounds and abilities. In order to maximize accessiblity, these differences need to be addressed by examining diverse populations. With the teacher's guidance, students test and discuss the usability of various technology tools, such as apps, games, and devices. For example, students could discuss the impacts of facial recognition software that works better for lighter skin tones and recognize that the software was likely developed with a homogeneous testing group. Students could then discuss how accessibility could be improved by sampling a more diverse population. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1)
Discuss issues of bias and accessibility in the design of existing technologies.
Descriptive Statement:
Computing technologies should support users of many backgrounds and abilities. In order to maximize accessiblity, these differences need to be addressed by examining diverse populations. With the teacher's guidance, students test and discuss the usability of various technology tools, such as apps, games, and devices. For example, students could discuss the impacts of facial recognition software that works better for lighter skin tones and recognize that the software was likely developed with a homogeneous testing group. Students could then discuss how accessibility could be improved by sampling a more diverse population. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1)
Standard Identifier: 9-12.AP.12
Grade Range:
9–12
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.1)
Standard:
Design algorithms to solve computational problems using a combination of original and existing algorithms.
Descriptive Statement:
Knowledge of common algorithms improves how people develop software, secure data, and store information. Some algorithms may be easier to implement in a particular programming language, work faster, require less memory to store data, and be applicable in a wider variety of situations than other algorithms. Algorithms used to search and sort data are common in a variety of software applications. For example, students could design an algorithm to calculate and display various sports statistics and use common sorting or mathematical algorithms (e.g., average) in the design of the overall algorithm. Alternatively, students could design an algorithm to implement a game and use existing randomization algorithms to place pieces randomly in starting positions or to control the "roll" of a dice or selection of a "card" from a deck.
Design algorithms to solve computational problems using a combination of original and existing algorithms.
Descriptive Statement:
Knowledge of common algorithms improves how people develop software, secure data, and store information. Some algorithms may be easier to implement in a particular programming language, work faster, require less memory to store data, and be applicable in a wider variety of situations than other algorithms. Algorithms used to search and sort data are common in a variety of software applications. For example, students could design an algorithm to calculate and display various sports statistics and use common sorting or mathematical algorithms (e.g., average) in the design of the overall algorithm. Alternatively, students could design an algorithm to implement a game and use existing randomization algorithms to place pieces randomly in starting positions or to control the "roll" of a dice or selection of a "card" from a deck.
Standard Identifier: 9-12.IC.23
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Fostering an Inclusive Computing Culture, Recognizing and Defining Computational Problems (1.2, 3.1)
Standard:
Evaluate the ways computing impacts personal, ethical, social, economic, and cultural practices.
Descriptive Statement:
Computing may improve, harm, or maintain practices. An understanding of how equity deficits, such as minimal exposure to computing, access to education, and training opportunities, are related to larger, systemic problems in society enables students to create more meaningful artifacts. Students illustrate the positive, negative, and/or neutral impacts of computing. For example, students could evaluate the accessibility of a product for a broad group of end users, such as people who lack access to broadband or who have various disabilities. Students could identify potential bias during the design process and evaluate approaches to maximize accessibility in product design. Alternatively, students could evaluate the impact of social media on cultural, economic, and social practices around the world.
Evaluate the ways computing impacts personal, ethical, social, economic, and cultural practices.
Descriptive Statement:
Computing may improve, harm, or maintain practices. An understanding of how equity deficits, such as minimal exposure to computing, access to education, and training opportunities, are related to larger, systemic problems in society enables students to create more meaningful artifacts. Students illustrate the positive, negative, and/or neutral impacts of computing. For example, students could evaluate the accessibility of a product for a broad group of end users, such as people who lack access to broadband or who have various disabilities. Students could identify potential bias during the design process and evaluate approaches to maximize accessibility in product design. Alternatively, students could evaluate the impact of social media on cultural, economic, and social practices around the world.
Showing 1 - 10 of 20 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881