Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 11 - 20 of 23 Standards

Standard Identifier: 6-8.IC.21

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Fostering an Inclusive Computing Culture (1.2)

Standard:
Discuss issues of bias and accessibility in the design of existing technologies.

Descriptive Statement:
Computing technologies should support users of many backgrounds and abilities. In order to maximize accessiblity, these differences need to be addressed by examining diverse populations. With the teacher's guidance, students test and discuss the usability of various technology tools, such as apps, games, and devices. For example, students could discuss the impacts of facial recognition software that works better for lighter skin tones and recognize that the software was likely developed with a homogeneous testing group. Students could then discuss how accessibility could be improved by sampling a more diverse population. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1)

Standard Identifier: 9-12.AP.14

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Control
Practice(s): Creating Computational Artifacts (5.2)

Standard:
Justify the selection of specific control structures by identifying tradeoffs associated with implementation, readability, and performance.

Descriptive Statement:
The selection of control structures in a given programming language impacts readability and performance. Readability refers to how clear the program is to other programmers and can be improved through documentation. Control structures at this level may include, for example, conditional statements, loops, event handlers, and recursion. Students justify control structure selection and tradeoffs in the process of creating their own computational artifacts. The discussion of performance is limited to a theoretical understanding of execution time and storage requirements; a quantitative analysis is not expected. For example, students could compare the readability and program performance of iterative and recursive implementations of procedures that calculate the Fibonacci sequence. Alternatively, students could compare the readability and performance tradeoffs of multiple if statements versus a nested if statement.

Standard Identifier: 9-12.AP.15

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Control
Practice(s): Creating Computational Artifacts (5.1, 5.2, 5.3)

Standard:
Iteratively design and develop computational artifacts for practical intent, personal expression, or to address a societal issue by using events to initiate instructions.

Descriptive Statement:
In this context, relevant computational artifacts can include programs, mobile apps, or web apps. Events can be user-initiated, such as a button press, or system-initiated, such as a timer firing. For example, students might create a tool for drawing on a canvas by first implementing a button to set the color of the pen. Alternatively, students might create a game where many events control instructions executed (e.g., when a score climbs above a threshold, a congratulatory sound is played; when a user clicks on an object, the object is loaded into a basket; when a user clicks on an arrow key, the player object is moved around the screen).

Standard Identifier: 9-12.DA.11

Grade Range: 9–12
Concept: Data & Analysis
Subconcept: Inference & Models
Practice(s): Developing and Using Abstractions, Testing and Refining Computational Artifacts (4.4, 6.3)

Standard:
Refine computational models to better represent the relationships among different elements of data collected from a phenomenon or process.

Descriptive Statement:
Computational models are used to make predictions about processes or phenomena based on selected data and features. They allow people to investigate the relationships among different variables to understand a system. Predictions are tested to validate models. Students evaluate these models against real-world observations. For example, students could use a population model that allows them to speculate about interactions among different species, evaluate the model based on data gathered from nature, and then refine the model to reflect more complex and realistic interactions.

Standard Identifier: 9-12.IC.23

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Fostering an Inclusive Computing Culture, Recognizing and Defining Computational Problems (1.2, 3.1)

Standard:
Evaluate the ways computing impacts personal, ethical, social, economic, and cultural practices.

Descriptive Statement:
Computing may improve, harm, or maintain practices. An understanding of how equity deficits, such as minimal exposure to computing, access to education, and training opportunities, are related to larger, systemic problems in society enables students to create more meaningful artifacts. Students illustrate the positive, negative, and/or neutral impacts of computing. For example, students could evaluate the accessibility of a product for a broad group of end users, such as people who lack access to broadband or who have various disabilities. Students could identify potential bias during the design process and evaluate approaches to maximize accessibility in product design. Alternatively, students could evaluate the impact of social media on cultural, economic, and social practices around the world.

Standard Identifier: 9-12.IC.24

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Fostering an Inclusive Computing Culture (1.2)

Standard:
Identify impacts of bias and equity deficit on design and implementation of computational artifacts and apply appropriate processes for evaluating issues of bias.

Descriptive Statement:
Biases could include incorrect assumptions developers have made about their users, including minimal exposure to computing, access to education, and training opportunities. Students identify and use strategies to test and refine computational artifacts with the goal of reducing bias and equity deficits and increasing universal access. For example, students could use a spreadsheet to chart various forms of equity deficits, and identify solutions in existing software. Students could use and refine the spreadsheet solutions to create a strategy for methodically testing software specifically for bias and equity.

Standard Identifier: 9-12.IC.25

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Recognizing and Defining Computational Problems (3.1)

Standard:
Demonstrate ways a given algorithm applies to problems across disciplines.

Descriptive Statement:
Students identify how a given algorithm can be applied to real-world problems in different disciplines. For example, students could demonstrate how a randomization algorithm can be used to select participants for a clinical medical trial or to select a flash card to display on a vocabulary quiz. Alternatively, students could demonstrate how searching and sorting algorithms are needed to organize records in manufacturing settings, or to support doctors queries of patient records, or to help governments manage support services they provide to their citizens.

Standard Identifier: 9-12.IC.26

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Communicating About Computing (7.2)

Standard:
Study, discuss, and think critically about the potential impacts and implications of emerging technologies on larger social, economic, and political structures, with evidence from credible sources.

Descriptive Statement:
For example, after studying the rise of artifical intelligence, students create a cause and effect chart to represent positive and negative impacts of this technology on society.

Standard Identifier: 9-12S.AP.15

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Control
Practice(s): Recognizing and Defining Computational Problems, Communicating About Computing (3.2, 7.2)

Standard:
Demonstrate the flow of execution of a recursive algorithm.

Descriptive Statement:
Recursion is a powerful problem-solving approach where the problem solution is built on solutions of smaller instances of the same problem. A base case, which returns a result without referencing itself, must be defined, otherwise infinite recursion will occur. Students represent a sequence of calls to a recursive algorithm and show how the process resolves to a solution. For example, students could draw a diagram to illustrate flow of execution by keeping track of parameter and returned values for each recursive call. Alternatively, students could create a video showing the passing of arguments as the recursive algorithm runs.

Standard Identifier: 9-12S.DA.9

Grade Range: 9–12 Specialty
Concept: Data & Analysis
Subconcept: Inference & Models
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Evaluate the ability of models and simulations to test and support the refinement of hypotheses.

Descriptive Statement:
A model could be implemented as a diagram or a program that represents key properties of a physical or other system. A simulation is based on a model, and enables observation of the system as key properties change. Students explore, explain, and evaluate existing models and simulations, in order to support the refinement of hypotheses about how the systems work. At this level, the ability to accurately and completely model and simulate complex systems is not expected. For example, a computer model of ants following a path created by other ants who found food explains the trail-like travel patterns of the insect. Students could evaluate if the output of the model fits well with their hypothesis that ants navigate the world through the use of pheromones. They could explain how the computer model supports this hypothesis and how it might leave out certain aspects of ant behavior and whether these are important to understanding ant travel behavior. Alternatively, students could hypothesize how different ground characteristics (e.g., soil type, thickness of sediment above bedrock) relate to the severity of shaking at the surface during an earthquake. They could add or modify input about ground characteristics into an earthquake simulator, observe the changed simulation output, and then evaluate their hypotheses.

Showing 11 - 20 of 23 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881