Computer Science Standards
Results
Showing 11 - 20 of 40 Standards
Standard Identifier: 3-5.IC.21
Grade Range:
3–5
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Fostering an Inclusive Computing Culture (1.2)
Standard:
Propose ways to improve the accessibility and usability of technology products for the diverse needs and wants of users.
Descriptive Statement:
The development and modification of computing technology is driven by people’s needs and wants and can affect groups differently. Students anticipate the needs and wants of diverse end users and propose ways to improve access and usability of technology, with consideration of potential perspectives of users with different backgrounds, ability levels, points of view, and disabilities. For example, students could research a wide variety of disabilities that would limit the use of traditional computational tools for the creation of multimedia artifacts, including digital images, songs, and videos. Students could then brainstorm and propose new software that would allow students that are limited by the disabilities to create similar artifacts in new ways (e.g., graphical display of music for the deaf, the sonification of images for visually impaired students, voice input for those that are unable to use traditional input like the mouse and the keyboard). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7) Alternatively, as they anticipate unique user needs, students may consider using both speech and text to convey information in a game. They may also wish to vary the types of programs they create, knowing that not everyone shares their own tastes. (CA NGSS: 3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)
Propose ways to improve the accessibility and usability of technology products for the diverse needs and wants of users.
Descriptive Statement:
The development and modification of computing technology is driven by people’s needs and wants and can affect groups differently. Students anticipate the needs and wants of diverse end users and propose ways to improve access and usability of technology, with consideration of potential perspectives of users with different backgrounds, ability levels, points of view, and disabilities. For example, students could research a wide variety of disabilities that would limit the use of traditional computational tools for the creation of multimedia artifacts, including digital images, songs, and videos. Students could then brainstorm and propose new software that would allow students that are limited by the disabilities to create similar artifacts in new ways (e.g., graphical display of music for the deaf, the sonification of images for visually impaired students, voice input for those that are unable to use traditional input like the mouse and the keyboard). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7) Alternatively, as they anticipate unique user needs, students may consider using both speech and text to convey information in a game. They may also wish to vary the types of programs they create, knowing that not everyone shares their own tastes. (CA NGSS: 3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)
Standard Identifier: 3-5.IC.23
Grade Range:
3–5
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.3)
Standard:
Describe reasons creators might limit the use of their work.
Descriptive Statement:
Ethical complications arise from the opportunities provided by computing. With the ease of sending and receiving copies of media on the Internet, in formats such as video, photos, and music, students consider the opportunities for unauthorized use, such as online piracy and disregard of copyrights. The license of a downloaded image or audio file may restrict modification, require attribution, or prohibit use entirely. For example, students could take part in a collaborative discussion regarding reasons why musicians who sell their songs in digital format choose to license their work so that they can earn money for their creative efforts. If others share the songs without paying for them, the musicians do not benefit financially and may struggle to produce music in the future. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could review the rights and reproduction guidelines for digital artifacts on a publicly accessible media source. They could then state an opinion with reasons they believe these guidelines are in place. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)
Describe reasons creators might limit the use of their work.
Descriptive Statement:
Ethical complications arise from the opportunities provided by computing. With the ease of sending and receiving copies of media on the Internet, in formats such as video, photos, and music, students consider the opportunities for unauthorized use, such as online piracy and disregard of copyrights. The license of a downloaded image or audio file may restrict modification, require attribution, or prohibit use entirely. For example, students could take part in a collaborative discussion regarding reasons why musicians who sell their songs in digital format choose to license their work so that they can earn money for their creative efforts. If others share the songs without paying for them, the musicians do not benefit financially and may struggle to produce music in the future. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could review the rights and reproduction guidelines for digital artifacts on a publicly accessible media source. They could then state an opinion with reasons they believe these guidelines are in place. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)
Standard Identifier: 6-8.AP.11
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Variables
Practice(s):
Creating Computational Artifacts (5.1, 5.2)
Standard:
Create clearly named variables that store data, and perform operations on their contents.
Descriptive Statement:
A variable is a container for data, and the name used for accessing the variable is called the identifier. Students declare, initialize, and update variables for storing different types of program data (e.g., text, integers) using names and naming conventions (e.g. camel case) that clearly convey the purpose of the variable, facilitate debugging, and improve readability. For example, students could program a quiz game with a score variable (e.g. quizScore) that is initially set to zero and increases by increments of one each time the user answers a quiz question correctly and decreases by increments of one each time a user answers a quiz question incorrectly, resulting in a score that is either a positive or negative integer. (CA CCSS for Mathematics 6.NS.5) Alternatively, students could write a program that prompts the user for their name, stores the user's response in a variable (e.g. userName), and uses this variable to greet the user by name.
Create clearly named variables that store data, and perform operations on their contents.
Descriptive Statement:
A variable is a container for data, and the name used for accessing the variable is called the identifier. Students declare, initialize, and update variables for storing different types of program data (e.g., text, integers) using names and naming conventions (e.g. camel case) that clearly convey the purpose of the variable, facilitate debugging, and improve readability. For example, students could program a quiz game with a score variable (e.g. quizScore) that is initially set to zero and increases by increments of one each time the user answers a quiz question correctly and decreases by increments of one each time a user answers a quiz question incorrectly, resulting in a score that is either a positive or negative integer. (CA CCSS for Mathematics 6.NS.5) Alternatively, students could write a program that prompts the user for their name, stores the user's response in a variable (e.g. userName), and uses this variable to greet the user by name.
Standard Identifier: 6-8.AP.13
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Recognizing and Defining Computational Problems (3.2)
Standard:
Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.
Descriptive Statement:
Decomposition facilitates program development by allowing students to focus on one piece at a time (e.g., getting input from the user, processing the data, and displaying the result to the user). Decomposition also enables different students to work on different parts at the same time. Students break down (decompose) problems into subproblems, which can be further broken down to smaller parts. Students could create an arcade game, with a title screen, a game screen, and a win/lose screen with an option to play the game again. To do this, students need to identify subproblems that accompany each screen (e.g., selecting an avatar goes in the title screen, events for controlling character action and scoring goes in the game screen, and displaying final and high score and asking whether to play again goes in the win/lose screen). Alternatively, students could decompose the problem of calculating and displaying class grades. Subproblems might include: accept input for students grades on various assignments, check for invalid grade entries, calculate per assignment averages, calculate per student averages, and display histograms of student scores for each assignment. (CA CCSS for Mathematics 6.RP.3c, 6.SP.4, 6.SP.5)
Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.
Descriptive Statement:
Decomposition facilitates program development by allowing students to focus on one piece at a time (e.g., getting input from the user, processing the data, and displaying the result to the user). Decomposition also enables different students to work on different parts at the same time. Students break down (decompose) problems into subproblems, which can be further broken down to smaller parts. Students could create an arcade game, with a title screen, a game screen, and a win/lose screen with an option to play the game again. To do this, students need to identify subproblems that accompany each screen (e.g., selecting an avatar goes in the title screen, events for controlling character action and scoring goes in the game screen, and displaying final and high score and asking whether to play again goes in the win/lose screen). Alternatively, students could decompose the problem of calculating and displaying class grades. Subproblems might include: accept input for students grades on various assignments, check for invalid grade entries, calculate per assignment averages, calculate per student averages, and display histograms of student scores for each assignment. (CA CCSS for Mathematics 6.RP.3c, 6.SP.4, 6.SP.5)
Standard Identifier: 6-8.AP.14
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Developing and Using Abstractions (4.1, 4.3)
Standard:
Create procedures with parameters to organize code and make it easier to reuse.
Descriptive Statement:
Procedures support modularity in developing programs. Parameters can provide greater flexibility, reusability, and efficient use of resources. Students create procedures and/or functions that are used multiple times within a program to repeat groups of instructions. They generalize the procedures and/or functions by defining parameters that generate different outputs for a wide range of inputs. For example, students could create a procedure to draw a circle which involves many instructions, but all of them can be invoked with one instruction, such as “drawCircle.” By adding a radius parameter, students can easily draw circles of different sizes. (CA CCSS for Mathematics 7.G.4) Alternatively, calculating the area of a regular polygon requires multiple steps. Students could write a function that accepts the number and length of the sides as parameters and then calculates the area of the polygon. This function can then be re-used inside any program to calculate the area of a regular polygon. (CA CCSS for Mathematics 6.G.1)
Create procedures with parameters to organize code and make it easier to reuse.
Descriptive Statement:
Procedures support modularity in developing programs. Parameters can provide greater flexibility, reusability, and efficient use of resources. Students create procedures and/or functions that are used multiple times within a program to repeat groups of instructions. They generalize the procedures and/or functions by defining parameters that generate different outputs for a wide range of inputs. For example, students could create a procedure to draw a circle which involves many instructions, but all of them can be invoked with one instruction, such as “drawCircle.” By adding a radius parameter, students can easily draw circles of different sizes. (CA CCSS for Mathematics 7.G.4) Alternatively, calculating the area of a regular polygon requires multiple steps. Students could write a function that accepts the number and length of the sides as parameters and then calculates the area of the polygon. This function can then be re-used inside any program to calculate the area of a regular polygon. (CA CCSS for Mathematics 6.G.1)
Standard Identifier: 6-8.DA.9
Grade Range:
6–8
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Developing and Using Abstractions, Testing and Refining Computational Artifacts (4.4, 6.1)
Standard:
Test and analyze the effects of changing variables while using computational models.
Descriptive Statement:
Variables within a computational model may be changed, in order to alter a computer simulation or to more accurately represent how various data is related. Students interact with a given model, make changes to identified model variables, and observe and reflect upon the results. For example, students could test a program that makes a robot move on a track by making changes to variables (e.g., height and angle of track, size and mass of the robot) and discussing how these changes affect how far the robot travels. (CA NGSS: MS-PS2-2) Alternatively, students could test a game simulation and change variables (e.g., skill of simulated players, nature of opening moves) and analyze how these changes affect who wins the game. (CA NGSS: MS-ETS1-3) Additionally, students could modify a model for predicting the likely color of the next pick from a bag of colored candy and analyze the effects of changing variables representing the common color ratios in a typical bag of candy. (CA CCSS for Mathematics 7.SP.7, 8.SP.4)
Test and analyze the effects of changing variables while using computational models.
Descriptive Statement:
Variables within a computational model may be changed, in order to alter a computer simulation or to more accurately represent how various data is related. Students interact with a given model, make changes to identified model variables, and observe and reflect upon the results. For example, students could test a program that makes a robot move on a track by making changes to variables (e.g., height and angle of track, size and mass of the robot) and discussing how these changes affect how far the robot travels. (CA NGSS: MS-PS2-2) Alternatively, students could test a game simulation and change variables (e.g., skill of simulated players, nature of opening moves) and analyze how these changes affect who wins the game. (CA NGSS: MS-ETS1-3) Additionally, students could modify a model for predicting the likely color of the next pick from a bag of colored candy and analyze the effects of changing variables representing the common color ratios in a typical bag of candy. (CA CCSS for Mathematics 7.SP.7, 8.SP.4)
Standard Identifier: 6-8.IC.20
Grade Range:
6–8
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Communicating About Computing (7.2)
Standard:
Compare tradeoffs associated with computing technologies that affect people's everyday activities and career options.
Descriptive Statement:
Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use computing technologies have tradeoffs. Students consider current events related to broad ideas, including privacy, communication, and automation. For example, students could compare and contrast the impacts of computing technologies with the impacts of other systems developed throughout history such as the Pony Express and US Postal System. (HSS.7.8.4) Alternatively, students could identify tradeoffs for both personal and professional uses of a variety of computing technologies. For instance, driverless cars can increase convenience and reduce accidents, but they may be susceptible to hacking. The emerging industry will reduce the number of taxi and shared-ride drivers, but may create more software engineering and cybersecurity jobs.
Compare tradeoffs associated with computing technologies that affect people's everyday activities and career options.
Descriptive Statement:
Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use computing technologies have tradeoffs. Students consider current events related to broad ideas, including privacy, communication, and automation. For example, students could compare and contrast the impacts of computing technologies with the impacts of other systems developed throughout history such as the Pony Express and US Postal System. (HSS.7.8.4) Alternatively, students could identify tradeoffs for both personal and professional uses of a variety of computing technologies. For instance, driverless cars can increase convenience and reduce accidents, but they may be susceptible to hacking. The emerging industry will reduce the number of taxi and shared-ride drivers, but may create more software engineering and cybersecurity jobs.
Standard Identifier: 6-8.IC.21
Grade Range:
6–8
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Fostering an Inclusive Computing Culture (1.2)
Standard:
Discuss issues of bias and accessibility in the design of existing technologies.
Descriptive Statement:
Computing technologies should support users of many backgrounds and abilities. In order to maximize accessiblity, these differences need to be addressed by examining diverse populations. With the teacher's guidance, students test and discuss the usability of various technology tools, such as apps, games, and devices. For example, students could discuss the impacts of facial recognition software that works better for lighter skin tones and recognize that the software was likely developed with a homogeneous testing group. Students could then discuss how accessibility could be improved by sampling a more diverse population. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1)
Discuss issues of bias and accessibility in the design of existing technologies.
Descriptive Statement:
Computing technologies should support users of many backgrounds and abilities. In order to maximize accessiblity, these differences need to be addressed by examining diverse populations. With the teacher's guidance, students test and discuss the usability of various technology tools, such as apps, games, and devices. For example, students could discuss the impacts of facial recognition software that works better for lighter skin tones and recognize that the software was likely developed with a homogeneous testing group. Students could then discuss how accessibility could be improved by sampling a more diverse population. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1)
Standard Identifier: 6-8.IC.23
Grade Range:
6–8
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.3)
Standard:
Compare tradeoffs associated with licenses for computational artifacts to balance the protection of the creators' rights and the ability for others to use and modify the artifacts.
Descriptive Statement:
Using and building on the works of others allows people to create meaningful works and fosters innovation. Copyright is an important law that helps protect the rights of creators so they receive credit and get paid for their work. Creative Commons is a kind of copyright that makes it easier for people to copy, share, and build on creative work, as long as they give credit for it. There are different kinds of Creative Commons licenses that allow people to do things such as change, remix, or make money from their work. As creators, students can pick and choose how they want their work to be used, and then create a Creative Commons license that they include in their work. For example, students could create interactive animations to educate others on bullying or protecting the environment. They then select an appropriate license to reflect how they want their program to be used by others (e.g., allow others to use their work and alter it, as long as they do not make a profit from it). Students use established methods to both protect their artifacts and attribute use of protected artifacts.
Compare tradeoffs associated with licenses for computational artifacts to balance the protection of the creators' rights and the ability for others to use and modify the artifacts.
Descriptive Statement:
Using and building on the works of others allows people to create meaningful works and fosters innovation. Copyright is an important law that helps protect the rights of creators so they receive credit and get paid for their work. Creative Commons is a kind of copyright that makes it easier for people to copy, share, and build on creative work, as long as they give credit for it. There are different kinds of Creative Commons licenses that allow people to do things such as change, remix, or make money from their work. As creators, students can pick and choose how they want their work to be used, and then create a Creative Commons license that they include in their work. For example, students could create interactive animations to educate others on bullying or protecting the environment. They then select an appropriate license to reflect how they want their program to be used by others (e.g., allow others to use their work and alter it, as long as they do not make a profit from it). Students use established methods to both protect their artifacts and attribute use of protected artifacts.
Standard Identifier: 6-8.IC.24
Grade Range:
6–8
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.2)
Standard:
Compare tradeoffs between allowing information to be public and keeping information private and secure.
Descriptive Statement:
While it is valuable to establish, maintain, and strengthen connections between people online, security attacks often start with intentionally or unintentionally providing personal information online. Students identify situations where the value of keeping information public outweighs privacy concerns, and vice versa. They also recognize practices such as phishing and social engineering and explain best practices to defend against them. For example, students could discuss the benefits of artists and designers displaying their work online to reach a broader audience. Students could also compare the tradeoffs of making a shared file accessible to anyone versus restricting it to specific accounts. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1) Alternatively, students could discuss the benefits and dangers of the increased accessibility of information available on the internet, and then compare this to the advantages and disadvantages of the introduction of the printing press in society. (HSS.7.8.4)
Compare tradeoffs between allowing information to be public and keeping information private and secure.
Descriptive Statement:
While it is valuable to establish, maintain, and strengthen connections between people online, security attacks often start with intentionally or unintentionally providing personal information online. Students identify situations where the value of keeping information public outweighs privacy concerns, and vice versa. They also recognize practices such as phishing and social engineering and explain best practices to defend against them. For example, students could discuss the benefits of artists and designers displaying their work online to reach a broader audience. Students could also compare the tradeoffs of making a shared file accessible to anyone versus restricting it to specific accounts. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1) Alternatively, students could discuss the benefits and dangers of the increased accessibility of information available on the internet, and then compare this to the advantages and disadvantages of the introduction of the printing press in society. (HSS.7.8.4)
Showing 11 - 20 of 40 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881