Computer Science Standards
Remove this criterion from the search
Add a Subconcept
Remove this criterion from the search
Culture
Remove this criterion from the search
Cybersecurity
Remove this criterion from the search
Modularity
Remove this criterion from the search
Program Development
Remove this criterion from the search
Safety, Law, & Ethics
Results
Showing 11 - 20 of 67 Standards
Standard Identifier: 3-5.AP.14
Grade Range:
3–5
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.3)
Standard:
Create programs by incorporating smaller portions of existing programs, to develop something new or add more advanced features.
Descriptive Statement:
Programs can be broken down into smaller parts, which can be incorporated into new or existing programs. Students incorporate predefined functions into their original designs. At this level, students do not need to understand all of the underlying implementation details of the abstractions that they use. For example, students could use code from a ping pong animation to make a ball bounce in a new basketball game. They could also incorporate code from a single-player basketball game to create a two-player game with slightly different rules. Alternatively, students could remix an animated story and add their own conclusion and/or additional dialogue. (CA CCSS for ELA/Literacy W.3.3.B, W.3.3.D, W.4.3.B, W.4.3.E, W.5.3.B, W.5.3.E) Additionally, when creating a game that occurs on the moon or planets, students could incorporate and modify code that simulates gravity on Earth. They could modify the strength of the gravitational force based on the mass of the planet or moon. (CA NGSS: 5-PS2-1)
Create programs by incorporating smaller portions of existing programs, to develop something new or add more advanced features.
Descriptive Statement:
Programs can be broken down into smaller parts, which can be incorporated into new or existing programs. Students incorporate predefined functions into their original designs. At this level, students do not need to understand all of the underlying implementation details of the abstractions that they use. For example, students could use code from a ping pong animation to make a ball bounce in a new basketball game. They could also incorporate code from a single-player basketball game to create a two-player game with slightly different rules. Alternatively, students could remix an animated story and add their own conclusion and/or additional dialogue. (CA CCSS for ELA/Literacy W.3.3.B, W.3.3.D, W.4.3.B, W.4.3.E, W.5.3.B, W.5.3.E) Additionally, when creating a game that occurs on the moon or planets, students could incorporate and modify code that simulates gravity on Earth. They could modify the strength of the gravitational force based on the mass of the planet or moon. (CA NGSS: 5-PS2-1)
Standard Identifier: 3-5.AP.15
Grade Range:
3–5
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Fostering an Inclusive Computing Culture, Creating Computational Artifacts (1.1, 5.1)
Standard:
Use an iterative process to plan and develop a program by considering the perspectives and preferences of others.
Descriptive Statement:
Planning is an important part of the iterative process of program development. Students gain a basic understanding of the importance and process of planning before beginning to write code for a program. They plan the development of a program by outlining key features, time and resource constraints, and user expectations. Students should document the plan as, for example, a storyboard, flowchart, pseudocode, or story map. For example, students could collaborate with a partner to plan and develop a program that graphs a function. They could iteratively modify the program based on feedback from diverse users, such as students who are color blind and may have trouble differentiating lines on a graph based on the color. (CA CCSS for Mathematics 5.G.1, 5.G.2) Alternatively, students could plan as a team to develop a program to display experimental data. They could implement the program in stages, generating basic displays first and then soliciting feedback from others on how easy it is to interpret (e.g., are labels clear and readable?, are lines thick enough?, are titles understandable?). Students could iteratively improve their display to make it more readable and to better support the communication of the finding of the experiment. (NGSS.3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)
Use an iterative process to plan and develop a program by considering the perspectives and preferences of others.
Descriptive Statement:
Planning is an important part of the iterative process of program development. Students gain a basic understanding of the importance and process of planning before beginning to write code for a program. They plan the development of a program by outlining key features, time and resource constraints, and user expectations. Students should document the plan as, for example, a storyboard, flowchart, pseudocode, or story map. For example, students could collaborate with a partner to plan and develop a program that graphs a function. They could iteratively modify the program based on feedback from diverse users, such as students who are color blind and may have trouble differentiating lines on a graph based on the color. (CA CCSS for Mathematics 5.G.1, 5.G.2) Alternatively, students could plan as a team to develop a program to display experimental data. They could implement the program in stages, generating basic displays first and then soliciting feedback from others on how easy it is to interpret (e.g., are labels clear and readable?, are lines thick enough?, are titles understandable?). Students could iteratively improve their display to make it more readable and to better support the communication of the finding of the experiment. (NGSS.3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)
Standard Identifier: 3-5.AP.16
Grade Range:
3–5
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Creating Computational Artifacts, Communicating About Computing (5.2, 7.3)
Standard:
Observe intellectual property rights and give appropriate attribution when creating, remixing, or combining programs.
Descriptive Statement:
Intellectual property rights can vary by country, but copyright laws give the creator of a work a set of rights and prevents others from copying the work and using it in ways that they may not like. Students consider common licenses that place limitations or restrictions on the use of others' work, such as images and music downloaded from the Internet. When incorporating the work of others, students attribute the work. At this level, students could give attribution by including credits or links directly in their programs, code comments, or separate project pages. For example, when making a program to model the life cycle of a butterfly, students could modify and reuse an existing program that describes the life cycle of a frog. Based on their research, students could identify and use Creative Commons-licensed or public domain images and sounds of caterpillars and butterflies. Students give attribution by properly citing the source of the original piece as necessary. (CA NGSS: 3-LS-1-1) (CA CCSS for ELA/Literacy W.3.8, W.4.8, W.5.8) Alternatively, when creating a program explaining the structure of the United States goverment, students find Creative Commons-licensed or public domain images to represent the three branches of government and attribute ownership of the images appropriately. If students find and incorporate an audio file of a group playing part of the national anthem, they appropriately give attribution on the project page. (HSS.3.4.4)
Observe intellectual property rights and give appropriate attribution when creating, remixing, or combining programs.
Descriptive Statement:
Intellectual property rights can vary by country, but copyright laws give the creator of a work a set of rights and prevents others from copying the work and using it in ways that they may not like. Students consider common licenses that place limitations or restrictions on the use of others' work, such as images and music downloaded from the Internet. When incorporating the work of others, students attribute the work. At this level, students could give attribution by including credits or links directly in their programs, code comments, or separate project pages. For example, when making a program to model the life cycle of a butterfly, students could modify and reuse an existing program that describes the life cycle of a frog. Based on their research, students could identify and use Creative Commons-licensed or public domain images and sounds of caterpillars and butterflies. Students give attribution by properly citing the source of the original piece as necessary. (CA NGSS: 3-LS-1-1) (CA CCSS for ELA/Literacy W.3.8, W.4.8, W.5.8) Alternatively, when creating a program explaining the structure of the United States goverment, students find Creative Commons-licensed or public domain images to represent the three branches of government and attribute ownership of the images appropriately. If students find and incorporate an audio file of a group playing part of the national anthem, they appropriately give attribution on the project page. (HSS.3.4.4)
Standard Identifier: 3-5.AP.17
Grade Range:
3–5
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Testing and Refining Computational Artifacts (6.2)
Standard:
Test and debug a program or algorithm to ensure it accomplishes the intended task.
Descriptive Statement:
Programs do not always run properly. Students need to understand how to test and make necessary corrections to their programs to ensure they run properly. Students successfully identify and fix errors in (debug) their programs and programs created by others. Debugging strategies at this level may include testing to determine the first place the solution is in error and fixing accordingly, leaving "breadcrumbs" in a program, and soliciting assistance from peers and online resources. For example, when students are developing a program to control the movement of a robot in a confined space, students test various inputs that control movement of the robot to make sure it behaves as intended (e.g., if an input would cause the robot to move past a wall of the confined space, it should not move at all). (CA NGSS: 3-5-ETS1-3) Additionally, students could test and debug an algorithm by tracing the inputs and outputs on a whiteboard. When noticing "bugs" (errors), students could identify what was supposed to happen and step through the algorithm to locate and then correct the error.
Test and debug a program or algorithm to ensure it accomplishes the intended task.
Descriptive Statement:
Programs do not always run properly. Students need to understand how to test and make necessary corrections to their programs to ensure they run properly. Students successfully identify and fix errors in (debug) their programs and programs created by others. Debugging strategies at this level may include testing to determine the first place the solution is in error and fixing accordingly, leaving "breadcrumbs" in a program, and soliciting assistance from peers and online resources. For example, when students are developing a program to control the movement of a robot in a confined space, students test various inputs that control movement of the robot to make sure it behaves as intended (e.g., if an input would cause the robot to move past a wall of the confined space, it should not move at all). (CA NGSS: 3-5-ETS1-3) Additionally, students could test and debug an algorithm by tracing the inputs and outputs on a whiteboard. When noticing "bugs" (errors), students could identify what was supposed to happen and step through the algorithm to locate and then correct the error.
Standard Identifier: 3-5.AP.18
Grade Range:
3–5
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Collaborating Around Computing (2.2)
Standard:
Perform different roles when collaborating with peers during the design, implementation, and review stages of program development.
Descriptive Statement:
Collaborative computing is the process of creating computational artifacts by working in pairs or on teams. It involves asking for the contributions and feedback of others. Effective collaboration can often lead to better outcomes than working independently. With teacher guidance, students take turns in different roles during program development, such as driver, navigator, notetaker, facilitator, and debugger, as they design and implement their program. For example, while taking on different roles during program development, students could create and maintain a journal about their experiences working collaboratively. (CA CCSS for ELA/Literacy W.3.10, W.4.10, W.5.10) (CA NGSS: 3-5-ETS1-2)
Perform different roles when collaborating with peers during the design, implementation, and review stages of program development.
Descriptive Statement:
Collaborative computing is the process of creating computational artifacts by working in pairs or on teams. It involves asking for the contributions and feedback of others. Effective collaboration can often lead to better outcomes than working independently. With teacher guidance, students take turns in different roles during program development, such as driver, navigator, notetaker, facilitator, and debugger, as they design and implement their program. For example, while taking on different roles during program development, students could create and maintain a journal about their experiences working collaboratively. (CA CCSS for ELA/Literacy W.3.10, W.4.10, W.5.10) (CA NGSS: 3-5-ETS1-2)
Standard Identifier: 3-5.AP.19
Grade Range:
3–5
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Communicating About Computing (7.2)
Standard:
Describe choices made during program development using code comments, presentations, and demonstrations.
Descriptive Statement:
People communicate about their code to help others understand and use their programs. Explaining one's design choices gives others a better understanding of one's work. Students may explain their step-by-step process of creating a program in a presentation or demonstration of their personal code journals. They describe how comments within code organize thought and process during the develpment of the program. For example, students could describe the decision to have the score in a game flash when it can be rounded to 100 by writing a comment in the code. (CA CCSS for Mathematics 3.NBT.1) Alternatively, students could present their overall program development experience and justify choices made by using storyboards, annotated images, videos, and/or journal entries. (CA CCSS for ELA/Literacy SL.3.4, SL.4.4, SL.5.4, SL.3.5, SL.4.5, SL.5.5) (CA NGSS: 3-5-ETS1-1, 3.5-ETS1-2, 3.5-ETS1-3)
Describe choices made during program development using code comments, presentations, and demonstrations.
Descriptive Statement:
People communicate about their code to help others understand and use their programs. Explaining one's design choices gives others a better understanding of one's work. Students may explain their step-by-step process of creating a program in a presentation or demonstration of their personal code journals. They describe how comments within code organize thought and process during the develpment of the program. For example, students could describe the decision to have the score in a game flash when it can be rounded to 100 by writing a comment in the code. (CA CCSS for Mathematics 3.NBT.1) Alternatively, students could present their overall program development experience and justify choices made by using storyboards, annotated images, videos, and/or journal entries. (CA CCSS for ELA/Literacy SL.3.4, SL.4.4, SL.5.4, SL.3.5, SL.4.5, SL.5.5) (CA NGSS: 3-5-ETS1-1, 3.5-ETS1-2, 3.5-ETS1-3)
Standard Identifier: 3-5.IC.20
Grade Range:
3–5
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Discuss computing technologies that have changed the world, and express how those technologies influence, and are influenced by, cultural practices.
Descriptive Statement:
New computing technologies are created and existing technologies are modified for many reasons, including to increase their benefits, decrease their risks, and meet societal needs. Students, with guidance from their teacher, discuss topics that relate to the history of computing technologies and changes in the world due to these technologies. Topics could be based on current news content, such as robotics, wireless Internet, mobile computing devices, GPS systems, wearable computing, and how social media has influenced social and political changes. For example, students could conduct research in computing technologies that impact daily life such as self-driving cars. They engage in a collaborative discussion describing impacts of these advancements (e.g., self-driving cars could reduce crashes and decrease traffic, but there is a cost barrier to purchasing them). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7, SL.3.1, SL.4.1, SL.5.1) Alternatively, students could discuss how technological advancements affected the entertainment industry and then compare and contrast the impacts on audiences. For instance, people with access to high-speed Internet may be able to choose to utilize streaming media (which may cost less than traditional media options), but those in rural areas may not have the same access and be able to reap those benefits. (VAPA Theatre Arts 4.3.2, 4.4.2)
Discuss computing technologies that have changed the world, and express how those technologies influence, and are influenced by, cultural practices.
Descriptive Statement:
New computing technologies are created and existing technologies are modified for many reasons, including to increase their benefits, decrease their risks, and meet societal needs. Students, with guidance from their teacher, discuss topics that relate to the history of computing technologies and changes in the world due to these technologies. Topics could be based on current news content, such as robotics, wireless Internet, mobile computing devices, GPS systems, wearable computing, and how social media has influenced social and political changes. For example, students could conduct research in computing technologies that impact daily life such as self-driving cars. They engage in a collaborative discussion describing impacts of these advancements (e.g., self-driving cars could reduce crashes and decrease traffic, but there is a cost barrier to purchasing them). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7, SL.3.1, SL.4.1, SL.5.1) Alternatively, students could discuss how technological advancements affected the entertainment industry and then compare and contrast the impacts on audiences. For instance, people with access to high-speed Internet may be able to choose to utilize streaming media (which may cost less than traditional media options), but those in rural areas may not have the same access and be able to reap those benefits. (VAPA Theatre Arts 4.3.2, 4.4.2)
Standard Identifier: 3-5.IC.21
Grade Range:
3–5
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Fostering an Inclusive Computing Culture (1.2)
Standard:
Propose ways to improve the accessibility and usability of technology products for the diverse needs and wants of users.
Descriptive Statement:
The development and modification of computing technology is driven by people’s needs and wants and can affect groups differently. Students anticipate the needs and wants of diverse end users and propose ways to improve access and usability of technology, with consideration of potential perspectives of users with different backgrounds, ability levels, points of view, and disabilities. For example, students could research a wide variety of disabilities that would limit the use of traditional computational tools for the creation of multimedia artifacts, including digital images, songs, and videos. Students could then brainstorm and propose new software that would allow students that are limited by the disabilities to create similar artifacts in new ways (e.g., graphical display of music for the deaf, the sonification of images for visually impaired students, voice input for those that are unable to use traditional input like the mouse and the keyboard). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7) Alternatively, as they anticipate unique user needs, students may consider using both speech and text to convey information in a game. They may also wish to vary the types of programs they create, knowing that not everyone shares their own tastes. (CA NGSS: 3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)
Propose ways to improve the accessibility and usability of technology products for the diverse needs and wants of users.
Descriptive Statement:
The development and modification of computing technology is driven by people’s needs and wants and can affect groups differently. Students anticipate the needs and wants of diverse end users and propose ways to improve access and usability of technology, with consideration of potential perspectives of users with different backgrounds, ability levels, points of view, and disabilities. For example, students could research a wide variety of disabilities that would limit the use of traditional computational tools for the creation of multimedia artifacts, including digital images, songs, and videos. Students could then brainstorm and propose new software that would allow students that are limited by the disabilities to create similar artifacts in new ways (e.g., graphical display of music for the deaf, the sonification of images for visually impaired students, voice input for those that are unable to use traditional input like the mouse and the keyboard). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7) Alternatively, as they anticipate unique user needs, students may consider using both speech and text to convey information in a game. They may also wish to vary the types of programs they create, knowing that not everyone shares their own tastes. (CA NGSS: 3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)
Standard Identifier: 3-5.IC.23
Grade Range:
3–5
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.3)
Standard:
Describe reasons creators might limit the use of their work.
Descriptive Statement:
Ethical complications arise from the opportunities provided by computing. With the ease of sending and receiving copies of media on the Internet, in formats such as video, photos, and music, students consider the opportunities for unauthorized use, such as online piracy and disregard of copyrights. The license of a downloaded image or audio file may restrict modification, require attribution, or prohibit use entirely. For example, students could take part in a collaborative discussion regarding reasons why musicians who sell their songs in digital format choose to license their work so that they can earn money for their creative efforts. If others share the songs without paying for them, the musicians do not benefit financially and may struggle to produce music in the future. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could review the rights and reproduction guidelines for digital artifacts on a publicly accessible media source. They could then state an opinion with reasons they believe these guidelines are in place. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)
Describe reasons creators might limit the use of their work.
Descriptive Statement:
Ethical complications arise from the opportunities provided by computing. With the ease of sending and receiving copies of media on the Internet, in formats such as video, photos, and music, students consider the opportunities for unauthorized use, such as online piracy and disregard of copyrights. The license of a downloaded image or audio file may restrict modification, require attribution, or prohibit use entirely. For example, students could take part in a collaborative discussion regarding reasons why musicians who sell their songs in digital format choose to license their work so that they can earn money for their creative efforts. If others share the songs without paying for them, the musicians do not benefit financially and may struggle to produce music in the future. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could review the rights and reproduction guidelines for digital artifacts on a publicly accessible media source. They could then state an opinion with reasons they believe these guidelines are in place. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)
Standard Identifier: 3-5.NI.5
Grade Range:
3–5
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Describe physical and digital security measures for protecting personal information.
Descriptive Statement:
Personal information can be protected physically and digitally. Cybersecurity is the protection from unauthorized use of electronic data, or the measures taken to achieve this. Students identify what personal information is and the reasons for protecting it. Students describe physical and digital approaches for protecting personal information such as using strong passwords and biometric scanners. For example, students could engage in a collaborative discussion orally or in writing regarding topics that relate to personal cybersecurity issues. Discussion topics could be based on current events related to cybersecurity or topics that are applicable to students, such as the necessity of backing up data to guard against loss, how to create strong passwords and the importance of not sharing passwords, or why we should keep operating systems updated and use anti-virus software to protect data and systems. Students could also discuss physical measures that can be used to protect data including biometric scanners, locked doors, and physical backups. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)
Describe physical and digital security measures for protecting personal information.
Descriptive Statement:
Personal information can be protected physically and digitally. Cybersecurity is the protection from unauthorized use of electronic data, or the measures taken to achieve this. Students identify what personal information is and the reasons for protecting it. Students describe physical and digital approaches for protecting personal information such as using strong passwords and biometric scanners. For example, students could engage in a collaborative discussion orally or in writing regarding topics that relate to personal cybersecurity issues. Discussion topics could be based on current events related to cybersecurity or topics that are applicable to students, such as the necessity of backing up data to guard against loss, how to create strong passwords and the importance of not sharing passwords, or why we should keep operating systems updated and use anti-virus software to protect data and systems. Students could also discuss physical measures that can be used to protect data including biometric scanners, locked doors, and physical backups. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)
Showing 11 - 20 of 67 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881