Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 21 - 30 of 67 Standards

Standard Identifier: 3-5.NI.6

Grade Range: 3–5
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Create patterns to protect information from unauthorized access.

Descriptive Statement:
Encryption is the process of converting information or data into a code, especially to prevent unauthorized access. At this level, students use patterns as a code for encryption, to protect information. Patterns should be decodable to the party for whom the message is intended, but difficult or impossible for those with unauthorized access. For example, students could create encrypted messages via flashing a flashlight in Morse code. Other students could decode this established language even if it wasn't meant for them. To model the idea of protecting data, students should create their own variations on or changes to Morse code. This ensures that when a member of that group flashes a message only other members of their group can decode it, even if other students in the room can see it. (CA NGSS: 4-PS4-3) Alternatively, students could engage in a CS Unplugged activity that models public key encryption: One student puts a paper containing a written secret in a box, locks it with a padlock, and hands the box to a second student. Student 2 puts on a second padlock and hands it back. Student 1 removes her lock and hands the box to student 2 again. Student 2 removes his lock, opens the box, and has access to the secret that student 1 sent him. Because the box always contained at least one lock while in transit, an outside party never had the opportunity to see the message and it is protected.

Standard Identifier: 6-8.AP.13

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Modularity
Practice(s): Recognizing and Defining Computational Problems (3.2)

Standard:
Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.

Descriptive Statement:
Decomposition facilitates program development by allowing students to focus on one piece at a time (e.g., getting input from the user, processing the data, and displaying the result to the user). Decomposition also enables different students to work on different parts at the same time. Students break down (decompose) problems into subproblems, which can be further broken down to smaller parts. Students could create an arcade game, with a title screen, a game screen, and a win/lose screen with an option to play the game again. To do this, students need to identify subproblems that accompany each screen (e.g., selecting an avatar goes in the title screen, events for controlling character action and scoring goes in the game screen, and displaying final and high score and asking whether to play again goes in the win/lose screen). Alternatively, students could decompose the problem of calculating and displaying class grades. Subproblems might include: accept input for students grades on various assignments, check for invalid grade entries, calculate per assignment averages, calculate per student averages, and display histograms of student scores for each assignment. (CA CCSS for Mathematics 6.RP.3c, 6.SP.4, 6.SP.5)

Standard Identifier: 6-8.AP.14

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Modularity
Practice(s): Developing and Using Abstractions (4.1, 4.3)

Standard:
Create procedures with parameters to organize code and make it easier to reuse.

Descriptive Statement:
Procedures support modularity in developing programs. Parameters can provide greater flexibility, reusability, and efficient use of resources. Students create procedures and/or functions that are used multiple times within a program to repeat groups of instructions. They generalize the procedures and/or functions by defining parameters that generate different outputs for a wide range of inputs. For example, students could create a procedure to draw a circle which involves many instructions, but all of them can be invoked with one instruction, such as “drawCircle.” By adding a radius parameter, students can easily draw circles of different sizes. (CA CCSS for Mathematics 7.G.4) Alternatively, calculating the area of a regular polygon requires multiple steps. Students could write a function that accepts the number and length of the sides as parameters and then calculates the area of the polygon. This function can then be re-used inside any program to calculate the area of a regular polygon. (CA CCSS for Mathematics 6.G.1)

Standard Identifier: 6-8.AP.15

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Fostering an Inclusive Computing Culture, Collaborating Around Computing (1.1, 2.3)

Standard:
Seek and incorporate feedback from team members and users to refine a solution that meets user needs.

Descriptive Statement:
Development teams that employ user-centered design processes create solutions (e.g., programs and devices) that can have a large societal impact (e.g., an app that allows people with speech difficulties to allow a smartphone to clarify their speech). Students begin to seek diverse perspectives throughout the design process to improve their computational artifacts. Considerations of the end-user may include usability, accessibility, age-appropriate content, respectful language, user perspective, pronoun use, or color contrast. For example, if students are designing an app to teach their classmates about recycling, they could first interview or survey their classmates to learn what their classmates already know about recycling and why they do or do not recycle. After building a prototype of the app, the students could then test the app with a sample of their classmates to see if they learned anything from the app and if they had difficulty using the app (e.g., trouble reading or understanding text). After gathering interview data, students could refine the app to meet classmate needs. (CA NGSS: MS-ETS1-4)

Standard Identifier: 6-8.AP.16

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts, Communicating About Computing (4.2, 5.2, 7.3)

Standard:
Incorporate existing code, media, and libraries into original programs, and give attribution.

Descriptive Statement:
Building on the work of others enables students to produce more interesting and powerful creations. Students use portions of code, algorithms, digital media, and/or data created by others in their own programs and websites. They give attribution to the original creators to acknowledge their contributions. For example, when creating a side-scrolling game, students may incorporate portions of code that create a realistic jump movement from another person's game, and they may also import Creative Commons-licensed images to use in the background. Alternatively, when creating a website to demonstrate their knowledge of historical figures from the Civil War, students may use a professionally-designed template and public domain images of historical figures. (HSS.8.10.5) Additionally, students could import libraries and connect to web application program interfaces (APIs) to make their own programming processes more efficient and reduce the number of bugs (e.g., to check whether the user input is a valid date, to input the current temperature from another city).

Standard Identifier: 6-8.AP.17

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Testing and Refining Computational Artifacts (6.1)

Standard:
Systematically test and refine programs using a range of test cases.

Descriptive Statement:
Use cases and test cases are created to evaluate whether programs function as intended. At this level, students develop use cases and test cases with teacher guidance. Testing should become a deliberate process that is more iterative, systematic, and proactive than at lower levels. For example, students test programs by considering potential errors, such as what will happen if a user enters invalid input (e.g., negative numbers and 0 instead of positive numbers). Alternatively, in an interactive program, students could test that the character cannot move off of the screen in any direction, cannot move through walls, and can interact with other characters. They then adjust character behavior as needed.

Standard Identifier: 6-8.AP.18

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Collaborating Around Computing, Creating Computational Artifacts (2.2, 5.1)

Standard:
Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.

Descriptive Statement:
Collaboration is a common and crucial practice in programming development. Often, many individuals and groups work on the interdependent parts of a project together. Students assume pre-defined roles within their teams and manage the project workflow using structured timelines. With teacher guidance, they begin to create collective goals, expectations, and equitable workloads. For example, students could decompose the design stage of a game into planning the storyboard, flowchart, and different parts of the game mechanics. They can then distribute tasks and roles among members of the team and assign deadlines. Alternatively, students could work as a team to develop a storyboard for an animation representing a written narrative, and then program the scenes individually. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3)

Standard Identifier: 6-8.AP.19

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Communicating About Computing (7.2)

Standard:
Document programs in order to make them easier to use, read, test, and debug.

Descriptive Statement:
Documentation allows creators, end users, and other developers to more easily use and understand a program. Students provide documentation for end users that explains their artifacts and how they function (e.g., project overview, user instructions). They also include comments within code to describe portions of their programs and make it easier for themselves and other developers to use, read, test, and debug. For example, students could add comments to describe functionality of different segments of code (e.g., input scores between 0 and 100, check for invalid input, calculate and display the average of the scores). They could also communicate the process used by writing design documents, creating flowcharts, or making presentations. (CA CCSS for ELA/Literacy SL.6.5, SL.7.5, SL.8.5)

Standard Identifier: 6-8.IC.20

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Communicating About Computing (7.2)

Standard:
Compare tradeoffs associated with computing technologies that affect people's everyday activities and career options.

Descriptive Statement:
Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use computing technologies have tradeoffs. Students consider current events related to broad ideas, including privacy, communication, and automation. For example, students could compare and contrast the impacts of computing technologies with the impacts of other systems developed throughout history such as the Pony Express and US Postal System. (HSS.7.8.4) Alternatively, students could identify tradeoffs for both personal and professional uses of a variety of computing technologies. For instance, driverless cars can increase convenience and reduce accidents, but they may be susceptible to hacking. The emerging industry will reduce the number of taxi and shared-ride drivers, but may create more software engineering and cybersecurity jobs.

Standard Identifier: 6-8.IC.21

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Fostering an Inclusive Computing Culture (1.2)

Standard:
Discuss issues of bias and accessibility in the design of existing technologies.

Descriptive Statement:
Computing technologies should support users of many backgrounds and abilities. In order to maximize accessiblity, these differences need to be addressed by examining diverse populations. With the teacher's guidance, students test and discuss the usability of various technology tools, such as apps, games, and devices. For example, students could discuss the impacts of facial recognition software that works better for lighter skin tones and recognize that the software was likely developed with a homogeneous testing group. Students could then discuss how accessibility could be improved by sampling a more diverse population. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1)

Showing 21 - 30 of 67 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881