Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 21 - 30 of 40 Standards

Standard Identifier: 9-12.AP.16

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Modularity
Practice(s): Recognizing and Defining Computational Problems (3.2)

Standard:
Decompose problems into smaller subproblems through systematic analysis, using constructs such as procedures, modules, and/or classes.

Descriptive Statement:
Decomposition enables solutions to complex problems to be designed and implemented as more manageable subproblems. Students decompose a given problem into subproblems that can be solved using existing functionalities, or new functionalities that they design and implement. For example, students could design a program for supporting soccer coaches in analyzing their teams' statistics. They decompose the problem in terms of managing input, analysis, and output. They decompose the data organization by designing what data will be stored per player, per game, and per team. Team players may be stored as a collection. Data per team player may include: number of shots, misses, saves, assists, penalty kicks, blocks, and corner kicks. Students design methods for supporting various statistical analyses and display options. Students design output formats for individual players or coaches.

Standard Identifier: 9-12.AP.17

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Modularity
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.3, 5.2)

Standard:
Create computational artifacts using modular design.

Descriptive Statement:
Computational artifacts are created by combining and modifying existing computational artifacts and/or by developing new artifacts. To reduce complexity, large programs can be designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. Students should create computational artifacts with interacting procedures, modules, and/or libraries. For example, students could incorporate a physics library into an animation of bouncing balls. Alternatively, students could integrate open-source JavaScript libraries to expand the functionality of a web application. Additionally, students could create their own game to teach Spanish vocabulary words using their own modular design (e.g., including methods to: control scoring, manage wordlists, manage access to different game levels, take input from the user, etc.).

Standard Identifier: 9-12.IC.23

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Fostering an Inclusive Computing Culture, Recognizing and Defining Computational Problems (1.2, 3.1)

Standard:
Evaluate the ways computing impacts personal, ethical, social, economic, and cultural practices.

Descriptive Statement:
Computing may improve, harm, or maintain practices. An understanding of how equity deficits, such as minimal exposure to computing, access to education, and training opportunities, are related to larger, systemic problems in society enables students to create more meaningful artifacts. Students illustrate the positive, negative, and/or neutral impacts of computing. For example, students could evaluate the accessibility of a product for a broad group of end users, such as people who lack access to broadband or who have various disabilities. Students could identify potential bias during the design process and evaluate approaches to maximize accessibility in product design. Alternatively, students could evaluate the impact of social media on cultural, economic, and social practices around the world.

Standard Identifier: 9-12.IC.24

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Fostering an Inclusive Computing Culture (1.2)

Standard:
Identify impacts of bias and equity deficit on design and implementation of computational artifacts and apply appropriate processes for evaluating issues of bias.

Descriptive Statement:
Biases could include incorrect assumptions developers have made about their users, including minimal exposure to computing, access to education, and training opportunities. Students identify and use strategies to test and refine computational artifacts with the goal of reducing bias and equity deficits and increasing universal access. For example, students could use a spreadsheet to chart various forms of equity deficits, and identify solutions in existing software. Students could use and refine the spreadsheet solutions to create a strategy for methodically testing software specifically for bias and equity.

Standard Identifier: 9-12.IC.25

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Recognizing and Defining Computational Problems (3.1)

Standard:
Demonstrate ways a given algorithm applies to problems across disciplines.

Descriptive Statement:
Students identify how a given algorithm can be applied to real-world problems in different disciplines. For example, students could demonstrate how a randomization algorithm can be used to select participants for a clinical medical trial or to select a flash card to display on a vocabulary quiz. Alternatively, students could demonstrate how searching and sorting algorithms are needed to organize records in manufacturing settings, or to support doctors queries of patient records, or to help governments manage support services they provide to their citizens.

Standard Identifier: 9-12.IC.26

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Communicating About Computing (7.2)

Standard:
Study, discuss, and think critically about the potential impacts and implications of emerging technologies on larger social, economic, and political structures, with evidence from credible sources.

Descriptive Statement:
For example, after studying the rise of artifical intelligence, students create a cause and effect chart to represent positive and negative impacts of this technology on society.

Standard Identifier: 9-12.IC.28

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Safety, Law, & Ethics
Practice(s): Communicating About Computing (7.3)

Standard:
Explain the beneficial and harmful effects that intellectual property laws can have on innovation.

Descriptive Statement:
Laws and ethics govern aspects of computing such as privacy, data, property, information, and identity. Students explain the beneficial and harmful effects of intellectual property laws as they relate to potential innovations and governance. For example, students could explain how patents protect inventions but may limit innovation. Alternatively, students could explain how intellectual property laws requiring that artists be paid for use of their media might limit the choice of songs developers can use in their computational artifacts.

Standard Identifier: 9-12.IC.29

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Safety, Law, & Ethics
Practice(s): Communicating About Computing (7.2)

Standard:
Explain the privacy concerns related to the collection and generation of data through automated processes.

Descriptive Statement:
Data can be collected and aggregated across millions of people, even when they are not actively engaging with or physically near the data collection devices. Students recognize automated and non-evident collection of information and the privacy concerns they raise for individuals. For example, students could explain the impact on an individual when a social media site's security settings allows for mining of account information even when the user is not online. Alternatively, students could discuss the impact on individuals of using surveillance video in a store to track customers. Additionally, students could discuss how road traffic can be monitored to change signals in real time to improve road efficiency without drivers being aware and discuss policies for retaining data that identifies drivers' cars and their behaviors.

Standard Identifier: 9-12.IC.30

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Safety, Law, & Ethics
Practice(s): Communicating About Computing (7.2)

Standard:
Evaluate the social and economic implications of privacy in the context of safety, law, or ethics.

Descriptive Statement:
Laws govern many aspects of computing, such as privacy, data, property, information, and identity. International differences in laws and ethics have implications for computing. Students make and justify claims about potential and/or actual privacy implications of policies, laws, or ethics and consider the associated tradeoffs, focusing on society and the economy. For example, students could explore the case of companies tracking online shopping behaviors in order to decide which products to target to consumers. Students could evaluate the ethical and legal dilemmas of collecting such data without consumer knowledge in order to profit companies. Alternatively, students could evaluate the implications of net neutrality laws on society's access to information and on the impacts to businesses of varying sizes.

Standard Identifier: 9-12.NI.6

Grade Range: 9–12
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Communicating About Computing (7.2)

Standard:
Compare and contrast security measures to address various security threats.

Descriptive Statement:
Network security depends on a combination of hardware, software, and practices that control access to data and systems. The needs of users and the sensitivity of data determine the level of security implemented. Potential security problems, such as denial-of-service attacks, ransomware, viruses, worms, spyware, and phishing, present threats to sensitive data. Students compare and contrast different types of security measures based on factors such as efficiency, feasibility, ethical impacts, usability, and security. At this level, students are not expected to develop or implement the security measures that they discuss. For example, students could review case studies or current events in which governments or organizations experienced data leaks or data loss as a result of these types of attacks. Students could provide an analysis of actual security measures taken comparing to other security measure which may have led to different outcomes. Alternatively, students might discuss computer security policies in place at the local level that present a tradeoff between usability and security, such as a web filter that prevents access to many educational sites but keeps the campus network safe.

Showing 21 - 30 of 40 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881