Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 1 - 10 of 17 Standards

Standard Identifier: K-2.AP.11

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Variables
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Model the way programs store data.

Descriptive Statement:
Information in the real world can be represented in computer programs. Students model the digital storage of data by transforming real-world information into symbolic representations that include text, numbers, and images. For example, after identifying symbols on a map and explaining what they represent in the real world, students could create their own symbols and corresponding legend to represent items on a map of their classroom (HSS.K.4.3, 1.2.3, 2.2.2) Alternatively, students could invent symbols to represent beat and/or pitch. Students could then modify symbols within the notation and explain how the musical phrase changes. (VAPA Music K.1.1, 1.1.1, 2.1.1, 2.2.2)

Standard Identifier: K-2.CS.1

Grade Range: K–2
Concept: Computing Systems
Subconcept: Devices
Practice(s): Fostering an Inclusive Computing Culture (1.1)

Standard:
Select and operate computing devices that perform a variety of tasks accurately and quickly based on user needs and preferences.

Descriptive Statement:
People use computing devices to perform a variety of tasks accurately and quickly. Computing devices interpret and follow the given instructions literally. Students select and operate an appropriate computing device and corresponding program or app for a given task. For example, students could use computing devices to describe what plants and animals (including humans) need to survive. In this case, students could choose to use a keyboard to type explanatory sentences onto graphics. They could also choose to use a touchscreen device with a stylus to annotate an image for a slideshow, or choose to use a camera enabled device to make a video. Student choices may reflect their own needs or the needs of others. (CA NGSS: K-LS1-1; 2-LS4-1) Alternatively, students could choose to use a computing device with audio recording capabilities to recount stories or poems. Students could clarify thoughts, ideas, or feelings via their preference of either using a device with digital drawing tools, or by creating paper and pencil drawing based on their needs and preferences. (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5)

Standard Identifier: K-2.NI.4

Grade Range: K–2
Concept: Networks & the Internet
Subconcept: Network Communication & Organization
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Model and describe how people connect to other people, places, information and ideas through a network.

Descriptive Statement:
Information is passed between multiple points (nodes) on a network. The Internet is a network that enables people to connect with other people worldwide through many different points of connection. Students model ways that people communicate, find information, or acquire ideas through a network. Students use a network, such as the internet, to access information from multiple locations or devices. For example, students could utilize a cloud-based platform to access shared documents or note-taking applications for group research projects, and then create a model (e.g., flowchart) to illustrate how this network aids collaboration. (CA CCSS for ELA/Literacy W.K.7, W.1.7, W.2.7) Alternatively, students could design devices that use light or sound to aid communication across distances (e.g., light source to send signals, paper cup and string “telephones,” and a pattern of drum beats) and then describe how networks build connections. (CA NGSS: 1-PS4-4)

Standard Identifier: 3-5.AP.11

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Variables
Practice(s): Creating Computational Artifacts (5.2)

Standard:
Create programs that use variables to store and modify data.

Descriptive Statement:
Variables are used to store and modify data. Students use variables in programs they create. At this level, students may need guidance in identifying when to create variables (i.e., performing the abstraction). For example, students could create a game to represent predators and prey in an ecosystem. They could declare a "score" variable, assign it to 0 at the start of the game, and add 1 (increment) the score each time the predator captures its prey. They could also declare a second "numberOfLives" variable, assign it to 3 at the start of the game, and subtract 1 (decrement) each time a prey is captured. They could program the game to end when "numberOfLives" equals 0. (CA NGSS: 5-LS2-1) (CA CCSS for Mathematics 5.OA.3) Alternatively, when students create programs to draw regular polygons, they could use variables to store the line size, line color, and/or side length. Students can extend learning by creatively combining a variety of polygons to create digital artwork, comparing and contrasting this to another work of art made by the use of different art tools and media, such as watercolor or tempera paints. (CA CCSS for Mathematics 3.G.1) (VAPA Visual Arts 3.1.4)

Standard Identifier: 3-5.CS.1

Grade Range: 3–5
Concept: Computing Systems
Subconcept: Devices
Practice(s): Communicating About Computing (7.2)

Standard:
Describe how computing devices connect to other components to form a system.

Descriptive Statement:
Computing devices often depend on other devices or components. Students describe physical and wireless connections to other components, including both input devices (e.g., keyboards, sensors, remote controls, microphones) and output devices (e.g., 3D printers, monitors, speakers). For example, students could describe the relationship among the heart, lungs, muscles, blood, and oxygen during physical activity and then compare this to how a mouse, keyboard, printer, and desktop computer connect and interact to allow for input, processing, and output. (P.E.3.4.7) Alternatively, when describing how light reflected from objects enters the eye and is then transferred to the brain to construct a visual image, students could compare this to a computing system that uses programming to construct a visual image when data is transferred and constructed/reconstructed through a keyboard, camera, or other components. (CA NGSS: 4-PS4-2)

Standard Identifier: 3-5.NI.4

Grade Range: 3–5
Concept: Networks & the Internet
Subconcept: Network Communication & Organization
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Model how information is broken down into smaller pieces, transmitted as packets through multiple devices over networks and the Internet, and reassembled at the destination.

Descriptive Statement:
Information is sent and received over physical or wireless paths. It is broken down into smaller pieces called packets, which are sent independently and reassembled at the destination. Students demonstrate their understanding of this flow of information by, for instance, drawing a model of the way packets are transmitted, programming an animation to show how packets are transmitted, or demonstrating this through an unplugged activity in which they physically act this out. For example, students could design a structure using building blocks or other materials with the intention of re-engineering it in another location, just as early Americans did after the intercontinental railroad was constructed in the 1850s (HSS.4.4.1, 4.4.2). Students could deconstruct the designed structure, place materials into specific containers (or plastic bags/brown paper bags/etc.), and develop instructions on how to recreate the structure once each container arrives at its intended destination. (CA NGSS: 3-5-ETS1) For example, students could cut up a map of the United States by state lines. Students could then place the states in envelopes and transmit the "packets" through a physical network, represented by multiple students spreading out in arms reach of at least two others. At the destination, the student who receives the packets resassembles the individual states back into a map of the United States. (HSS 5.9) Alternatively, students could perform a similar activity with a diatonic scale, cutting the scale into individual notes. Each note, in order, should be placed into a numbered envelope based on its location on the scale. These envelopes can be transmitted across the network of students and reassembled at the destination. (VAPA Music 4.1.2)

Standard Identifier: 6-8.AP.11

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Variables
Practice(s): Creating Computational Artifacts (5.1, 5.2)

Standard:
Create clearly named variables that store data, and perform operations on their contents.

Descriptive Statement:
A variable is a container for data, and the name used for accessing the variable is called the identifier. Students declare, initialize, and update variables for storing different types of program data (e.g., text, integers) using names and naming conventions (e.g. camel case) that clearly convey the purpose of the variable, facilitate debugging, and improve readability. For example, students could program a quiz game with a score variable (e.g. quizScore) that is initially set to zero and increases by increments of one each time the user answers a quiz question correctly and decreases by increments of one each time a user answers a quiz question incorrectly, resulting in a score that is either a positive or negative integer. (CA CCSS for Mathematics 6.NS.5) Alternatively, students could write a program that prompts the user for their name, stores the user's response in a variable (e.g. userName), and uses this variable to greet the user by name.

Standard Identifier: 6-8.CS.1

Grade Range: 6–8
Concept: Computing Systems
Subconcept: Devices
Practice(s): Fostering an Inclusive Computing Culture, Recognizing and Defining Computational Problems (1.2, 3.3)

Standard:
Design modifications to computing devices in order to improve the ways users interact with the devices.

Descriptive Statement:
Computing devices can extend the abilities of humans, but design considerations are critical to make these devices useful. Students suggest modifications to the design of computing devices and describe how these modifications would improve usabilty. For example, students could create a design for the screen layout of a smartphone that is more usable by people with vision impairments or hand tremors. They might also design how to use the device as a scanner to convert text to speech. Alternatively, students could design modifications for a student ID card reader to increase usability by planning for scanner height, need of scanner device to be connected physically to the computer, robustness of scanner housing, and choice of use of RFID or line of sight scanners. (CA NGSS: MS-ETS1-1)

Standard Identifier: 6-8.NI.4

Grade Range: 6–8
Concept: Networks & the Internet
Subconcept: Network Communication & Organization
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Model the role of protocols in transmitting data across networks and the Internet.

Descriptive Statement:
Protocols are rules that define how messages between computers are sent. They determine how quickly and securely information is transmitted across networks, as well as how to handle errors in transmission. Students model how data is sent using protocols to choose the fastest path and to deal with missing information. Knowledge of the details of how specific protocols work is not expected. The priority at this grade level is understanding the purpose of protocols and how they enable efficient and errorless communication. For example, students could devise a plan for sending data representing a textual message and devise a plan for resending lost information. Alternatively, students could devise a plan for sending data to represent a picture, and devise a plan for interpreting the image when pieces of the data are missing. Additionally, students could model the speed of sending messages by Bluetooth, Wi-Fi, or cellular networks and describe ways errors in data transmission can be detected and dealt with.

Standard Identifier: 9-12.AP.13

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Variables
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Create more generalized computational solutions using collections instead of repeatedly using simple variables.

Descriptive Statement:
Computers can automate repetitive tasks with algorithms that use collections to simplify and generalize computational problems. Students identify common features in multiple segments of code and substitute a single segment that uses collections (i.e., arrays, sets, lists) to account for the differences. For example, students could take a program that inputs students' scores into multiple variables and modify it to read these scores into a single array of scores. Alternatively, instead of writing one procedure to find averages of student scores and another to find averages of student absences, students could write a single general average procedure to support both tasks.

Showing 1 - 10 of 17 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881