Computer Science Standards
Results
Showing 1 - 4 of 4 Standards
Standard Identifier: K-2.DA.8
Grade Range:
K–2
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Developing and Using Abstractions, Communicating About Computing (4.4, 7.1)
Standard:
Collect and present data in various visual formats.
Descriptive Statement:
Data can be collected and presented in various visual formats. For example, students could measure temperature changes throughout a day. They could then discuss ways to display the data visually. Students could extend the activity by writing different narratives based on collected data, such as a story that begins in the morning when temperatures are low and one that begins in the afternoon when the sun is high and temperatures are higher. (CA CCSS for ELA/Literacy RL.K.9, RL.1.9, RL.2.9, W.K.3, W.1.3, W.2.3). Alternatively, students collect peers' favorite flavor of ice cream and brainstorm differing ways to display the data. In groups, students can choose to display and present the data in a format of their choice. (CA CCSS for Mathematics K.MD.3, 1.MD.4, 2.MD.10)
Collect and present data in various visual formats.
Descriptive Statement:
Data can be collected and presented in various visual formats. For example, students could measure temperature changes throughout a day. They could then discuss ways to display the data visually. Students could extend the activity by writing different narratives based on collected data, such as a story that begins in the morning when temperatures are low and one that begins in the afternoon when the sun is high and temperatures are higher. (CA CCSS for ELA/Literacy RL.K.9, RL.1.9, RL.2.9, W.K.3, W.1.3, W.2.3). Alternatively, students collect peers' favorite flavor of ice cream and brainstorm differing ways to display the data. In groups, students can choose to display and present the data in a format of their choice. (CA CCSS for Mathematics K.MD.3, 1.MD.4, 2.MD.10)
Standard Identifier: 9-12.CS.1
Grade Range:
9–12
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Developing and Using Abstractions (4.1)
Standard:
Describe ways in which abstractions hide the underlying implementation details of computing systems to simplify user experiences.
Descriptive Statement:
An abstraction is a representation of an idea or phenomenon that hides details irrelevant to the question at hand. Computing systems, both stand alone and embedded in products, are often integrated with other systems to simplify user experiences. For example, students could identify geolocation hardware embedded in a smartphone and describe how this simplifies the users experience since the user does not have to enter her own location on the phone. Alternatively, students might select an embedded device such as a car stereo, identify the types of data (e.g., radio station presets, volume level) and procedures (e.g., increase volume, store/recall saved station, mute) it includes, and explain how the implementation details are hidden from the user.
Describe ways in which abstractions hide the underlying implementation details of computing systems to simplify user experiences.
Descriptive Statement:
An abstraction is a representation of an idea or phenomenon that hides details irrelevant to the question at hand. Computing systems, both stand alone and embedded in products, are often integrated with other systems to simplify user experiences. For example, students could identify geolocation hardware embedded in a smartphone and describe how this simplifies the users experience since the user does not have to enter her own location on the phone. Alternatively, students might select an embedded device such as a car stereo, identify the types of data (e.g., radio station presets, volume level) and procedures (e.g., increase volume, store/recall saved station, mute) it includes, and explain how the implementation details are hidden from the user.
Standard Identifier: 9-12S.CS.1
Grade Range:
9–12 Specialty
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Developing and Using Abstractions, Communicating About Computing (4.4, 7.2)
Standard:
Illustrate ways computing systems implement logic through hardware components.
Descriptive Statement:
Computing systems use processors (e.g., a central processing unit or CPU) to execute program instructions. Processors are composed of components that implement the logical or computational operations required by the instructions. AND, OR, and NOT are examples of logic gates. Adders are examples of higher-leveled circuits built using low-level logic gates. Students illustrate how modern computing devices are made up of smaller and simpler components which implement the logic underlying the functionality of a computer processor. At this level, knowledge of how logic gates are constructed is not expected. For example, students could construct truth tables, draw logic circuit diagrams, or use an online logic circuit simulator. Students could explore the interaction of the CPU, RAM, and I/O by labeling a diagram of the von Neumann architecture. Alternatively, students could design higher-level circuits using low-level logic gates (e.g., adders).
Illustrate ways computing systems implement logic through hardware components.
Descriptive Statement:
Computing systems use processors (e.g., a central processing unit or CPU) to execute program instructions. Processors are composed of components that implement the logical or computational operations required by the instructions. AND, OR, and NOT are examples of logic gates. Adders are examples of higher-leveled circuits built using low-level logic gates. Students illustrate how modern computing devices are made up of smaller and simpler components which implement the logic underlying the functionality of a computer processor. At this level, knowledge of how logic gates are constructed is not expected. For example, students could construct truth tables, draw logic circuit diagrams, or use an online logic circuit simulator. Students could explore the interaction of the CPU, RAM, and I/O by labeling a diagram of the von Neumann architecture. Alternatively, students could design higher-level circuits using low-level logic gates (e.g., adders).
Standard Identifier: 9-12S.DA.8
Grade Range:
9–12 Specialty
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Developing and Using Abstractions, Communicating About Computing (4.1, 7.1)
Standard:
Use data analysis tools and techniques to identify patterns in data representing complex systems.
Descriptive Statement:
Data analysis tools can be useful for identifying patterns in large amounts of data in many different fields. Computers can help with the processing of extremely large sets of data making very complex systems manageable. Students use computational tools to analyze, summarize, and visualize a large set of data. For example, students could analyze a data set containing marathon times and determine how age, gender, weather, and course features correlate with running times. Alternatively, students could analyze a data set of social media interactions to identify the most influential users and visualize the intersections between different social groups.
Use data analysis tools and techniques to identify patterns in data representing complex systems.
Descriptive Statement:
Data analysis tools can be useful for identifying patterns in large amounts of data in many different fields. Computers can help with the processing of extremely large sets of data making very complex systems manageable. Students use computational tools to analyze, summarize, and visualize a large set of data. For example, students could analyze a data set containing marathon times and determine how age, gender, weather, and course features correlate with running times. Alternatively, students could analyze a data set of social media interactions to identify the most influential users and visualize the intersections between different social groups.
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881