Computer Science Standards
Results
Showing 11 - 15 of 15 Standards
Standard Identifier: 9-12.DA.10
Grade Range:
9–12
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Creating Computational Artifacts (5.2)
Standard:
Create data visualizations to help others better understand real-world phenomena.
Descriptive Statement:
People transform, generalize, simplify, and present large data sets in different ways to influence how other people interpret and understand the underlying information. Students select relevant data from large or complex data sets in support of a claim or to communicate the information in a more sophisticated manner. Students use software tools or programming to perform a range of mathematical operations to transform and analyze data and create powerful data visualizations (that reveal patterns in the data). For example, students could create data visualizations to reveal patterns in voting data by state, gender, political affiliation, or socioeconomic status. Alternatively, students could use U.S. government data on criticially endangered animals to visualize population change over time.
Create data visualizations to help others better understand real-world phenomena.
Descriptive Statement:
People transform, generalize, simplify, and present large data sets in different ways to influence how other people interpret and understand the underlying information. Students select relevant data from large or complex data sets in support of a claim or to communicate the information in a more sophisticated manner. Students use software tools or programming to perform a range of mathematical operations to transform and analyze data and create powerful data visualizations (that reveal patterns in the data). For example, students could create data visualizations to reveal patterns in voting data by state, gender, political affiliation, or socioeconomic status. Alternatively, students could use U.S. government data on criticially endangered animals to visualize population change over time.
Standard Identifier: 9-12.IC.27
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Social Interactions
Practice(s):
Collaborating Around Computing (2.4)
Standard:
Use collaboration tools and methods to increase connectivity with people of different cultures and careers.
Descriptive Statement:
Increased digital connectivity and communication between people across a variety of cultures and in differing professions has changed the collaborative nature of personal and professional interaction. Students identify, explain, and use appropriate collaborative tools. For example, students could compare ways that various technological collaboration tools could help a team become more cohesive and then choose one of these tools to manage their teamwork. Alternatively, students could use different collaborative tools and methods to solicit input from not only team members and classmates but also others, such as participants in online forums or local communities.
Use collaboration tools and methods to increase connectivity with people of different cultures and careers.
Descriptive Statement:
Increased digital connectivity and communication between people across a variety of cultures and in differing professions has changed the collaborative nature of personal and professional interaction. Students identify, explain, and use appropriate collaborative tools. For example, students could compare ways that various technological collaboration tools could help a team become more cohesive and then choose one of these tools to manage their teamwork. Alternatively, students could use different collaborative tools and methods to solicit input from not only team members and classmates but also others, such as participants in online forums or local communities.
Standard Identifier: 9-12S.CS.1
Grade Range:
9–12 Specialty
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Developing and Using Abstractions, Communicating About Computing (4.4, 7.2)
Standard:
Illustrate ways computing systems implement logic through hardware components.
Descriptive Statement:
Computing systems use processors (e.g., a central processing unit or CPU) to execute program instructions. Processors are composed of components that implement the logical or computational operations required by the instructions. AND, OR, and NOT are examples of logic gates. Adders are examples of higher-leveled circuits built using low-level logic gates. Students illustrate how modern computing devices are made up of smaller and simpler components which implement the logic underlying the functionality of a computer processor. At this level, knowledge of how logic gates are constructed is not expected. For example, students could construct truth tables, draw logic circuit diagrams, or use an online logic circuit simulator. Students could explore the interaction of the CPU, RAM, and I/O by labeling a diagram of the von Neumann architecture. Alternatively, students could design higher-level circuits using low-level logic gates (e.g., adders).
Illustrate ways computing systems implement logic through hardware components.
Descriptive Statement:
Computing systems use processors (e.g., a central processing unit or CPU) to execute program instructions. Processors are composed of components that implement the logical or computational operations required by the instructions. AND, OR, and NOT are examples of logic gates. Adders are examples of higher-leveled circuits built using low-level logic gates. Students illustrate how modern computing devices are made up of smaller and simpler components which implement the logic underlying the functionality of a computer processor. At this level, knowledge of how logic gates are constructed is not expected. For example, students could construct truth tables, draw logic circuit diagrams, or use an online logic circuit simulator. Students could explore the interaction of the CPU, RAM, and I/O by labeling a diagram of the von Neumann architecture. Alternatively, students could design higher-level circuits using low-level logic gates (e.g., adders).
Standard Identifier: 9-12S.DA.7
Grade Range:
9–12 Specialty
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Communicating About Computing (7.1)
Standard:
Select and use data collection tools and techniques to generate data sets.
Descriptive Statement:
Data collection and organization is essential for obtaining new information insights and revealing new knowledge in our modern world. As computers are able to process larger sets of data, gathering data in an efficient and reliable matter remains important. The choice of data collection tools and quality of the data collected influences how new information, insights, and knowledge will support claims and be communicated. Students devise a reliable method to gather information, use software to extract digital data from data sets, and clean and organize the data in ways that support summaries of information obtained from the data. At this level, students may, but are not required to, create their own data collection tools. For example, students could create a computational artifact that records information from a sonic distance sensor to monitor the motion of a prototype vehicle. Alternatively, students could develop a reliable and practical way to automatically digitally record the number of animals entering a portion of a field to graze. Additionally, students could also find a web site containing data (e.g., race results for a major marathon), scrape the data from the web site using data collection tools, and format the data so it can be analyzed.
Select and use data collection tools and techniques to generate data sets.
Descriptive Statement:
Data collection and organization is essential for obtaining new information insights and revealing new knowledge in our modern world. As computers are able to process larger sets of data, gathering data in an efficient and reliable matter remains important. The choice of data collection tools and quality of the data collected influences how new information, insights, and knowledge will support claims and be communicated. Students devise a reliable method to gather information, use software to extract digital data from data sets, and clean and organize the data in ways that support summaries of information obtained from the data. At this level, students may, but are not required to, create their own data collection tools. For example, students could create a computational artifact that records information from a sonic distance sensor to monitor the motion of a prototype vehicle. Alternatively, students could develop a reliable and practical way to automatically digitally record the number of animals entering a portion of a field to graze. Additionally, students could also find a web site containing data (e.g., race results for a major marathon), scrape the data from the web site using data collection tools, and format the data so it can be analyzed.
Standard Identifier: 9-12S.DA.8
Grade Range:
9–12 Specialty
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Developing and Using Abstractions, Communicating About Computing (4.1, 7.1)
Standard:
Use data analysis tools and techniques to identify patterns in data representing complex systems.
Descriptive Statement:
Data analysis tools can be useful for identifying patterns in large amounts of data in many different fields. Computers can help with the processing of extremely large sets of data making very complex systems manageable. Students use computational tools to analyze, summarize, and visualize a large set of data. For example, students could analyze a data set containing marathon times and determine how age, gender, weather, and course features correlate with running times. Alternatively, students could analyze a data set of social media interactions to identify the most influential users and visualize the intersections between different social groups.
Use data analysis tools and techniques to identify patterns in data representing complex systems.
Descriptive Statement:
Data analysis tools can be useful for identifying patterns in large amounts of data in many different fields. Computers can help with the processing of extremely large sets of data making very complex systems manageable. Students use computational tools to analyze, summarize, and visualize a large set of data. For example, students could analyze a data set containing marathon times and determine how age, gender, weather, and course features correlate with running times. Alternatively, students could analyze a data set of social media interactions to identify the most influential users and visualize the intersections between different social groups.
Showing 11 - 15 of 15 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881