Computer Science Standards
Remove this criterion from the search
Hardware & Software
Remove this criterion from the search
Inference & Models
Remove this criterion from the search
Network Communication & Organization
Remove this criterion from the search
Safety, Law, & Ethics
Remove this criterion from the search
Troubleshooting
Results
Showing 21 - 29 of 29 Standards
Standard Identifier: 9-12.IC.29
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.2)
Standard:
Explain the privacy concerns related to the collection and generation of data through automated processes.
Descriptive Statement:
Data can be collected and aggregated across millions of people, even when they are not actively engaging with or physically near the data collection devices. Students recognize automated and non-evident collection of information and the privacy concerns they raise for individuals. For example, students could explain the impact on an individual when a social media site's security settings allows for mining of account information even when the user is not online. Alternatively, students could discuss the impact on individuals of using surveillance video in a store to track customers. Additionally, students could discuss how road traffic can be monitored to change signals in real time to improve road efficiency without drivers being aware and discuss policies for retaining data that identifies drivers' cars and their behaviors.
Explain the privacy concerns related to the collection and generation of data through automated processes.
Descriptive Statement:
Data can be collected and aggregated across millions of people, even when they are not actively engaging with or physically near the data collection devices. Students recognize automated and non-evident collection of information and the privacy concerns they raise for individuals. For example, students could explain the impact on an individual when a social media site's security settings allows for mining of account information even when the user is not online. Alternatively, students could discuss the impact on individuals of using surveillance video in a store to track customers. Additionally, students could discuss how road traffic can be monitored to change signals in real time to improve road efficiency without drivers being aware and discuss policies for retaining data that identifies drivers' cars and their behaviors.
Standard Identifier: 9-12.IC.30
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.2)
Standard:
Evaluate the social and economic implications of privacy in the context of safety, law, or ethics.
Descriptive Statement:
Laws govern many aspects of computing, such as privacy, data, property, information, and identity. International differences in laws and ethics have implications for computing. Students make and justify claims about potential and/or actual privacy implications of policies, laws, or ethics and consider the associated tradeoffs, focusing on society and the economy. For example, students could explore the case of companies tracking online shopping behaviors in order to decide which products to target to consumers. Students could evaluate the ethical and legal dilemmas of collecting such data without consumer knowledge in order to profit companies. Alternatively, students could evaluate the implications of net neutrality laws on society's access to information and on the impacts to businesses of varying sizes.
Evaluate the social and economic implications of privacy in the context of safety, law, or ethics.
Descriptive Statement:
Laws govern many aspects of computing, such as privacy, data, property, information, and identity. International differences in laws and ethics have implications for computing. Students make and justify claims about potential and/or actual privacy implications of policies, laws, or ethics and consider the associated tradeoffs, focusing on society and the economy. For example, students could explore the case of companies tracking online shopping behaviors in order to decide which products to target to consumers. Students could evaluate the ethical and legal dilemmas of collecting such data without consumer knowledge in order to profit companies. Alternatively, students could evaluate the implications of net neutrality laws on society's access to information and on the impacts to businesses of varying sizes.
Standard Identifier: 9-12.NI.4
Grade Range:
9–12
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Developing and Using Abstractions (4.1)
Standard:
Describe issues that impact network functionality.
Descriptive Statement:
Many different organizations, including educational, governmental, private businesses, and private households rely on networks to function adequately in order to engage in online commerce and activity. Quality of Service (QoS) refers to the capability of a network to provide better service to selected network traffic over various technologies from the perspective of the consumer. Students define and discuss performance measures that impact network functionality, such as latency, bandwidth, throughput, jitter, and error rate. For example, students could use online network simulators to explore how performance measures impact network functionality and describe impacts when various changes in the network occur. Alternatively, students could describe how pauses in television interviews conducted over satellite telephones are impacted by networking factors such as latency and jitter.
Describe issues that impact network functionality.
Descriptive Statement:
Many different organizations, including educational, governmental, private businesses, and private households rely on networks to function adequately in order to engage in online commerce and activity. Quality of Service (QoS) refers to the capability of a network to provide better service to selected network traffic over various technologies from the perspective of the consumer. Students define and discuss performance measures that impact network functionality, such as latency, bandwidth, throughput, jitter, and error rate. For example, students could use online network simulators to explore how performance measures impact network functionality and describe impacts when various changes in the network occur. Alternatively, students could describe how pauses in television interviews conducted over satellite telephones are impacted by networking factors such as latency and jitter.
Standard Identifier: 9-12.NI.5
Grade Range:
9–12
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Communicating About Computing (7.2)
Standard:
Describe the design characteristics of the Internet.
Descriptive Statement:
The Internet connects devices and networks all over the world. Large-scale coordination occurs among many different machines across multiple paths every time a web page is opened or an image is viewed online. Through the domain name system (DNS), devices on the Internet can look up Internet Protocol (IP) addresses, allowing end-to-end communication between devices. The design decisions that direct the coordination among systems composing the Internet also allow for scalability and reliability. Students factor historical, cultural, and economic decisions in their explanations of the Internet. For example, students could explain how hierarchy in the DNS supports scalability and reliability. Alternatively, students could describe how the redundancy of routing between two nodes on the Internet increases reliability and scales as the Internet grows.
Describe the design characteristics of the Internet.
Descriptive Statement:
The Internet connects devices and networks all over the world. Large-scale coordination occurs among many different machines across multiple paths every time a web page is opened or an image is viewed online. Through the domain name system (DNS), devices on the Internet can look up Internet Protocol (IP) addresses, allowing end-to-end communication between devices. The design decisions that direct the coordination among systems composing the Internet also allow for scalability and reliability. Students factor historical, cultural, and economic decisions in their explanations of the Internet. For example, students could explain how hierarchy in the DNS supports scalability and reliability. Alternatively, students could describe how the redundancy of routing between two nodes on the Internet increases reliability and scales as the Internet grows.
Standard Identifier: 9-12S.CS.2
Grade Range:
9–12 Specialty
Concept:
Computing Systems
Subconcept:
Hardware & Software
Practice(s):
Communicating About Computing (7.2)
Standard:
Categorize and describe the different functions of operating system software.
Descriptive Statement:
Operating systems (OS) software is the code that manages the computer’s basic functions. Students describe at a high level the different functions of different components of operating system software. Examples of functions could include memory management, data storage/retrieval, processes management, and access control. For example, students could use monitoring tools including within an OS to inspect the services and functions running on a system and create an artifact to describe the activity that they observed (e.g., when a browser is running with many tabs open, memory usage is increased). They could also inspect and describe changes in the activity monitor that occur as different applications are executing (e.g., processor utilization increases when a new application is launched).
Categorize and describe the different functions of operating system software.
Descriptive Statement:
Operating systems (OS) software is the code that manages the computer’s basic functions. Students describe at a high level the different functions of different components of operating system software. Examples of functions could include memory management, data storage/retrieval, processes management, and access control. For example, students could use monitoring tools including within an OS to inspect the services and functions running on a system and create an artifact to describe the activity that they observed (e.g., when a browser is running with many tabs open, memory usage is increased). They could also inspect and describe changes in the activity monitor that occur as different applications are executing (e.g., processor utilization increases when a new application is launched).
Standard Identifier: 9-12S.DA.9
Grade Range:
9–12 Specialty
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Evaluate the ability of models and simulations to test and support the refinement of hypotheses.
Descriptive Statement:
A model could be implemented as a diagram or a program that represents key properties of a physical or other system. A simulation is based on a model, and enables observation of the system as key properties change. Students explore, explain, and evaluate existing models and simulations, in order to support the refinement of hypotheses about how the systems work. At this level, the ability to accurately and completely model and simulate complex systems is not expected. For example, a computer model of ants following a path created by other ants who found food explains the trail-like travel patterns of the insect. Students could evaluate if the output of the model fits well with their hypothesis that ants navigate the world through the use of pheromones. They could explain how the computer model supports this hypothesis and how it might leave out certain aspects of ant behavior and whether these are important to understanding ant travel behavior. Alternatively, students could hypothesize how different ground characteristics (e.g., soil type, thickness of sediment above bedrock) relate to the severity of shaking at the surface during an earthquake. They could add or modify input about ground characteristics into an earthquake simulator, observe the changed simulation output, and then evaluate their hypotheses.
Evaluate the ability of models and simulations to test and support the refinement of hypotheses.
Descriptive Statement:
A model could be implemented as a diagram or a program that represents key properties of a physical or other system. A simulation is based on a model, and enables observation of the system as key properties change. Students explore, explain, and evaluate existing models and simulations, in order to support the refinement of hypotheses about how the systems work. At this level, the ability to accurately and completely model and simulate complex systems is not expected. For example, a computer model of ants following a path created by other ants who found food explains the trail-like travel patterns of the insect. Students could evaluate if the output of the model fits well with their hypothesis that ants navigate the world through the use of pheromones. They could explain how the computer model supports this hypothesis and how it might leave out certain aspects of ant behavior and whether these are important to understanding ant travel behavior. Alternatively, students could hypothesize how different ground characteristics (e.g., soil type, thickness of sediment above bedrock) relate to the severity of shaking at the surface during an earthquake. They could add or modify input about ground characteristics into an earthquake simulator, observe the changed simulation output, and then evaluate their hypotheses.
Standard Identifier: 9-12S.IC.30
Grade Range:
9–12 Specialty
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.2)
Standard:
Debate laws and regulations that impact the development and use of software.
Descriptive Statement:
Laws and regulations influence what software gets developed and how society benefits or does not. For example, students could debate the pros and cons of changes to regulations around net neutrality: Many believe that mandating that Internet service providers (ISPs) maintain net neutrality facilitates competition between Internet-based content providers and supports consumer choice, but others believe such regulations represent government overreach. Alternatively, students could debate the impacts of different copyright rules in various countries and impacts on economy, society, and culture: Long-lasting copyrights in the United States enable creators to profit from their works but also prevent works from entering the public domain where they can be freely used and adapted to create new works.
Debate laws and regulations that impact the development and use of software.
Descriptive Statement:
Laws and regulations influence what software gets developed and how society benefits or does not. For example, students could debate the pros and cons of changes to regulations around net neutrality: Many believe that mandating that Internet service providers (ISPs) maintain net neutrality facilitates competition between Internet-based content providers and supports consumer choice, but others believe such regulations represent government overreach. Alternatively, students could debate the impacts of different copyright rules in various countries and impacts on economy, society, and culture: Long-lasting copyrights in the United States enable creators to profit from their works but also prevent works from entering the public domain where they can be freely used and adapted to create new works.
Standard Identifier: 9-12S.NI.3
Grade Range:
9–12 Specialty
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Examine the scalability and reliability of networks, by describing the relationship between routers, switches, servers, topology, and addressing.
Descriptive Statement:
Choice of network topology is determined, in part, by how many devices can be supported and the character of communication needs between devices. Each device is assigned an address that uniquely identifies it on the network. Routers function by comparing addresses to determine how information on the network should reach its desgination. Switches compare addresses to determine which computers will receive information. Students explore and explain how network performance degrades when various factors affect the network. For example, students could use online network simulators to describe how network performance changes when the number of devices increases. Alternatively, students could visualize and describe changes to the distribution of network traffic when a router on the network fails.
Examine the scalability and reliability of networks, by describing the relationship between routers, switches, servers, topology, and addressing.
Descriptive Statement:
Choice of network topology is determined, in part, by how many devices can be supported and the character of communication needs between devices. Each device is assigned an address that uniquely identifies it on the network. Routers function by comparing addresses to determine how information on the network should reach its desgination. Switches compare addresses to determine which computers will receive information. Students explore and explain how network performance degrades when various factors affect the network. For example, students could use online network simulators to describe how network performance changes when the number of devices increases. Alternatively, students could visualize and describe changes to the distribution of network traffic when a router on the network fails.
Standard Identifier: 9-12S.NI.4
Grade Range:
9–12 Specialty
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Communicating About Computing (7.2)
Standard:
Explain how the characteristics of the Internet influence the systems developed on it.
Descriptive Statement:
The design of the Internet includes hierarchy and redundancy to help it scale reliably. An end-to-end architecture means that key functions are placed at endpoints in the network (i.e., an Internet user's computer and the server hosting a website) rather than in the middle of the network. Open standards for transmitting information across the Internet help fuel its growth. This design philosophy impacts systems and technologies that integrate with the Internet. Students explain how Internet-based systems depend on these characteristics. For example, students could explain how having common, standard protocols enable products and services from different developers to communicate. Alternatively, students could describe how the end-to-end architecture and redundancy in routing enables Internet users to access information and services even if part of the network is down; the information can still be routed from one end to another through a different path.
Explain how the characteristics of the Internet influence the systems developed on it.
Descriptive Statement:
The design of the Internet includes hierarchy and redundancy to help it scale reliably. An end-to-end architecture means that key functions are placed at endpoints in the network (i.e., an Internet user's computer and the server hosting a website) rather than in the middle of the network. Open standards for transmitting information across the Internet help fuel its growth. This design philosophy impacts systems and technologies that integrate with the Internet. Students explain how Internet-based systems depend on these characteristics. For example, students could explain how having common, standard protocols enable products and services from different developers to communicate. Alternatively, students could describe how the end-to-end architecture and redundancy in routing enables Internet users to access information and services even if part of the network is down; the information can still be routed from one end to another through a different path.
Showing 21 - 29 of 29 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881