Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 11 - 13 of 13 Standards

Standard Identifier: 9-12S.IC.27

Grade Range: 9–12 Specialty
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Fostering an Inclusive Computing Culture, Testing and Refining Computational Artifacts (1.2, 6.1)

Standard:
Evaluate computational artifacts with regard to improving their beneficial effects and reducing harmful effects on society.

Descriptive Statement:
People design computational artifacts to help make the lives of humans better. Students evaluate an artifact and comment on aspects of it which positively or negatively impact users and give ideas for reducing the possible negative impacts. For example, students could discuss how algorithms that screen job candidates' resumes can cut costs for companies (a beneficial effect) but introduce or amplify bias in the hiring process (a harmful effect). Alternatively, students could discuss how turn-by-turn navigation tools can help drivers avoid traffic and find alternate routes (a beneficial effect), but sometimes channel large amounts of traffic down small neighborhood streets (a harmful effect). Additionally, students could discuss how social media algorithms can help direct users' attention to interesting content (a beneficial effect), while simultaneously limiting users' exposure to information that contradicts pre-existing beliefs (a harmful effect).

Standard Identifier: 9-12S.IC.29

Grade Range: 9–12 Specialty
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Fostering an Inclusive Computing Culture (1.2)

Standard:
Evaluate the impact of equity, access, and influence on the distribution of computing resources in a global society.

Descriptive Statement:
Computers, computation, and technology can help improve the lives of humans and support positive developments in society, economy, and/or culture. However, access to such resources is not the same for everyone in the world. Students define and evaluate ways in which different technologies, applications, or computational tools might benefit all people in society or might only benefit those with the greatest access or resources. For example, students could describe ways in which groups of people benefit, do not benefit, or could benefit better by access to high-speed Internet connectivity. Alternatively, students could describe educational impacts of children not having access to a computer in their home.

Standard Identifier: 9-12S.NI.6

Grade Range: 9–12 Specialty
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.3, 4.2)

Standard:
Analyze cryptographic techniques to model the secure transmission of information.

Descriptive Statement:
Cryptography is essential to many models of cybersecurity. Open standards help to ensure cryptographic security. Certificate Authorities (CAs) issue digital certificates that validate the ownership of encrypted keys used in secured communications across the Internet. Students encode and decode messages using encryption and decryption methods, and they should understand the different levels of complexity to hide or secure information. For example, students could analyze the relative designs of private key vs. public key encryption techniques and apply the best choice for a particular scenario. Alternatively, students could analyze the design of the Diffie-Helman algorithm to RSA (Rivest–Shamir–Adleman) and apply the best choice for a particular scenario. They could provide a cost-benefit analysis of runtime and ease of cracking for various encryption techniques which are commonly used to secure transmission of data over the Internet.

Showing 11 - 13 of 13 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881