Computer Science Standards
Remove this criterion from the search
Fostering an Inclusive Computing Culture
Remove this criterion from the search
Recognizing and Defining Computational Problems
Remove this criterion from the search
Creating Computational Artifacts
Remove this criterion from the search
Communicating About Computing
Results
Showing 1 - 8 of 8 Standards
Standard Identifier: K-2.CS.1
Grade Range:
K–2
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Fostering an Inclusive Computing Culture (1.1)
Standard:
Select and operate computing devices that perform a variety of tasks accurately and quickly based on user needs and preferences.
Descriptive Statement:
People use computing devices to perform a variety of tasks accurately and quickly. Computing devices interpret and follow the given instructions literally. Students select and operate an appropriate computing device and corresponding program or app for a given task. For example, students could use computing devices to describe what plants and animals (including humans) need to survive. In this case, students could choose to use a keyboard to type explanatory sentences onto graphics. They could also choose to use a touchscreen device with a stylus to annotate an image for a slideshow, or choose to use a camera enabled device to make a video. Student choices may reflect their own needs or the needs of others. (CA NGSS: K-LS1-1; 2-LS4-1) Alternatively, students could choose to use a computing device with audio recording capabilities to recount stories or poems. Students could clarify thoughts, ideas, or feelings via their preference of either using a device with digital drawing tools, or by creating paper and pencil drawing based on their needs and preferences. (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5)
Select and operate computing devices that perform a variety of tasks accurately and quickly based on user needs and preferences.
Descriptive Statement:
People use computing devices to perform a variety of tasks accurately and quickly. Computing devices interpret and follow the given instructions literally. Students select and operate an appropriate computing device and corresponding program or app for a given task. For example, students could use computing devices to describe what plants and animals (including humans) need to survive. In this case, students could choose to use a keyboard to type explanatory sentences onto graphics. They could also choose to use a touchscreen device with a stylus to annotate an image for a slideshow, or choose to use a camera enabled device to make a video. Student choices may reflect their own needs or the needs of others. (CA NGSS: K-LS1-1; 2-LS4-1) Alternatively, students could choose to use a computing device with audio recording capabilities to recount stories or poems. Students could clarify thoughts, ideas, or feelings via their preference of either using a device with digital drawing tools, or by creating paper and pencil drawing based on their needs and preferences. (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5)
Standard Identifier: K-2.CS.2
Grade Range:
K–2
Concept:
Computing Systems
Subconcept:
Hardware & Software
Practice(s):
Communicating About Computing (7.2)
Standard:
Explain the functions of common hardware and software components of computing systems.
Descriptive Statement:
A computing system is composed of hardware and software. Hardware includes the physical components of a computer system. Software provides instructions for the system. These instructions are represented in a form that a computer can understand and are designed for specific purposes. Students identify and describe the function of hardware, such as desktop computers, laptop computers, tablet devices, monitors, keyboards, mice, trackpads, microphones, and printers. Students also identify and describe common software applications such as web browsers, games, and word processors. For example, students could create drawings of a computing system and label its major components with appropriate terminology. Students could then explain the function of each component. (VAPA Visual Arts 2 5.0) (CA CCSS for ELA/Literacy SL.K.5, SL.K.6, SL.1.5, SL.1.6, SL.2.5, SL.2.6) Alternatively, students could each be assigned a component of a computing system and arrange their bodies to represent the system. Students could then describe how their assigned component functions within the system. (P.E.K.1, 1.1)
Explain the functions of common hardware and software components of computing systems.
Descriptive Statement:
A computing system is composed of hardware and software. Hardware includes the physical components of a computer system. Software provides instructions for the system. These instructions are represented in a form that a computer can understand and are designed for specific purposes. Students identify and describe the function of hardware, such as desktop computers, laptop computers, tablet devices, monitors, keyboards, mice, trackpads, microphones, and printers. Students also identify and describe common software applications such as web browsers, games, and word processors. For example, students could create drawings of a computing system and label its major components with appropriate terminology. Students could then explain the function of each component. (VAPA Visual Arts 2 5.0) (CA CCSS for ELA/Literacy SL.K.5, SL.K.6, SL.1.5, SL.1.6, SL.2.5, SL.2.6) Alternatively, students could each be assigned a component of a computing system and arrange their bodies to represent the system. Students could then describe how their assigned component functions within the system. (P.E.K.1, 1.1)
Standard Identifier: 3-5.CS.1
Grade Range:
3–5
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Communicating About Computing (7.2)
Standard:
Describe how computing devices connect to other components to form a system.
Descriptive Statement:
Computing devices often depend on other devices or components. Students describe physical and wireless connections to other components, including both input devices (e.g., keyboards, sensors, remote controls, microphones) and output devices (e.g., 3D printers, monitors, speakers). For example, students could describe the relationship among the heart, lungs, muscles, blood, and oxygen during physical activity and then compare this to how a mouse, keyboard, printer, and desktop computer connect and interact to allow for input, processing, and output. (P.E.3.4.7) Alternatively, when describing how light reflected from objects enters the eye and is then transferred to the brain to construct a visual image, students could compare this to a computing system that uses programming to construct a visual image when data is transferred and constructed/reconstructed through a keyboard, camera, or other components. (CA NGSS: 4-PS4-2)
Describe how computing devices connect to other components to form a system.
Descriptive Statement:
Computing devices often depend on other devices or components. Students describe physical and wireless connections to other components, including both input devices (e.g., keyboards, sensors, remote controls, microphones) and output devices (e.g., 3D printers, monitors, speakers). For example, students could describe the relationship among the heart, lungs, muscles, blood, and oxygen during physical activity and then compare this to how a mouse, keyboard, printer, and desktop computer connect and interact to allow for input, processing, and output. (P.E.3.4.7) Alternatively, when describing how light reflected from objects enters the eye and is then transferred to the brain to construct a visual image, students could compare this to a computing system that uses programming to construct a visual image when data is transferred and constructed/reconstructed through a keyboard, camera, or other components. (CA NGSS: 4-PS4-2)
Standard Identifier: 3-5.DA.9
Grade Range:
3–5
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Communicating About Computing (7.1)
Standard:
Use data to highlight and/or propose relationships, predict outcomes, or communicate ideas.
Descriptive Statement:
The accuracy of data analysis is related to how the data is represented. Inferences or predictions based on data are less likely to be accurate if the data is insufficient, incomplete, or inaccurate or if the data is incorrect in some way. Additionally, people select aspects and subsets of data to be transformed, organized, and categorized. Students should be able to refer to data when communicating an idea, in order to highlight and/or propose relationships, predict outcomes, highlight different views and/or communicate insights and ideas. For example, students can be provided a scenario in which they are city managers who have a specific amount of funds to improve a city in California. Students can collect data of a city concerning land use, vegetation, wildlife, climate, population density, services and transportation (HSS.4.1.5) to determine and present what area needs to be focused on to improve a problem. Students can compare their data and planned use of funds with peers, clearly communicating or predict outcomes based on data collected. (CA CCCS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could record the temperature at noon each day to show that temperatures are higher in certain months of the year. If temperatures are not recorded on non-school days or are recorded incorrectly, the data would be incomplete and ideas being communicated could be inaccurate. Students may also record the day of the week on which the data was collected, but this would have no relevance to whether temperatures are higher or lower. In order to have sufficient and accurate data on which to communicate the idea, students might use data provided by a governmental weather agency. (CA NGSS: 3-ESS2-1)
Use data to highlight and/or propose relationships, predict outcomes, or communicate ideas.
Descriptive Statement:
The accuracy of data analysis is related to how the data is represented. Inferences or predictions based on data are less likely to be accurate if the data is insufficient, incomplete, or inaccurate or if the data is incorrect in some way. Additionally, people select aspects and subsets of data to be transformed, organized, and categorized. Students should be able to refer to data when communicating an idea, in order to highlight and/or propose relationships, predict outcomes, highlight different views and/or communicate insights and ideas. For example, students can be provided a scenario in which they are city managers who have a specific amount of funds to improve a city in California. Students can collect data of a city concerning land use, vegetation, wildlife, climate, population density, services and transportation (HSS.4.1.5) to determine and present what area needs to be focused on to improve a problem. Students can compare their data and planned use of funds with peers, clearly communicating or predict outcomes based on data collected. (CA CCCS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could record the temperature at noon each day to show that temperatures are higher in certain months of the year. If temperatures are not recorded on non-school days or are recorded incorrectly, the data would be incomplete and ideas being communicated could be inaccurate. Students may also record the day of the week on which the data was collected, but this would have no relevance to whether temperatures are higher or lower. In order to have sufficient and accurate data on which to communicate the idea, students might use data provided by a governmental weather agency. (CA NGSS: 3-ESS2-1)
Standard Identifier: 6-8.CS.1
Grade Range:
6–8
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Fostering an Inclusive Computing Culture, Recognizing and Defining Computational Problems (1.2, 3.3)
Standard:
Design modifications to computing devices in order to improve the ways users interact with the devices.
Descriptive Statement:
Computing devices can extend the abilities of humans, but design considerations are critical to make these devices useful. Students suggest modifications to the design of computing devices and describe how these modifications would improve usabilty. For example, students could create a design for the screen layout of a smartphone that is more usable by people with vision impairments or hand tremors. They might also design how to use the device as a scanner to convert text to speech. Alternatively, students could design modifications for a student ID card reader to increase usability by planning for scanner height, need of scanner device to be connected physically to the computer, robustness of scanner housing, and choice of use of RFID or line of sight scanners. (CA NGSS: MS-ETS1-1)
Design modifications to computing devices in order to improve the ways users interact with the devices.
Descriptive Statement:
Computing devices can extend the abilities of humans, but design considerations are critical to make these devices useful. Students suggest modifications to the design of computing devices and describe how these modifications would improve usabilty. For example, students could create a design for the screen layout of a smartphone that is more usable by people with vision impairments or hand tremors. They might also design how to use the device as a scanner to convert text to speech. Alternatively, students could design modifications for a student ID card reader to increase usability by planning for scanner height, need of scanner device to be connected physically to the computer, robustness of scanner housing, and choice of use of RFID or line of sight scanners. (CA NGSS: MS-ETS1-1)
Standard Identifier: 6-8.CS.2
Grade Range:
6–8
Concept:
Computing Systems
Subconcept:
Hardware & Software
Practice(s):
Creating Computational Artifacts (5.1)
Standard:
Design a project that combines hardware and software components to collect and exchange data.
Descriptive Statement:
Collecting and exchanging data involves input, output, storage, and processing. When possible, students select the components for their project designs by considering tradeoffs between factors such as functionality, cost, size, speed, accessibility, and aesthetics. Students do not need to implement their project design in order to meet this standard. For example, students could design a mobile tour app that displays information relevant to specific locations when the device is nearby or when the user selects a virtual stop on the tour. They select appropriate components, such as GPS or cellular-based geolocation tools, textual input, and speech recognition, to use in their project design. Alternatively, students could design a project that uses a sensor to collect the salinity, moisture, and temperature of soil. They may select a sensor that connects wirelessly through a Bluetooth connection because it supports greater mobility, or they could instead select a physical USB connection that does not require a separate power source. (CA NGSS: MS-ETS1-1, MS-ETS1-2)
Design a project that combines hardware and software components to collect and exchange data.
Descriptive Statement:
Collecting and exchanging data involves input, output, storage, and processing. When possible, students select the components for their project designs by considering tradeoffs between factors such as functionality, cost, size, speed, accessibility, and aesthetics. Students do not need to implement their project design in order to meet this standard. For example, students could design a mobile tour app that displays information relevant to specific locations when the device is nearby or when the user selects a virtual stop on the tour. They select appropriate components, such as GPS or cellular-based geolocation tools, textual input, and speech recognition, to use in their project design. Alternatively, students could design a project that uses a sensor to collect the salinity, moisture, and temperature of soil. They may select a sensor that connects wirelessly through a Bluetooth connection because it supports greater mobility, or they could instead select a physical USB connection that does not require a separate power source. (CA NGSS: MS-ETS1-1, MS-ETS1-2)
Standard Identifier: 9-12S.CS.1
Grade Range:
9–12 Specialty
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Developing and Using Abstractions, Communicating About Computing (4.4, 7.2)
Standard:
Illustrate ways computing systems implement logic through hardware components.
Descriptive Statement:
Computing systems use processors (e.g., a central processing unit or CPU) to execute program instructions. Processors are composed of components that implement the logical or computational operations required by the instructions. AND, OR, and NOT are examples of logic gates. Adders are examples of higher-leveled circuits built using low-level logic gates. Students illustrate how modern computing devices are made up of smaller and simpler components which implement the logic underlying the functionality of a computer processor. At this level, knowledge of how logic gates are constructed is not expected. For example, students could construct truth tables, draw logic circuit diagrams, or use an online logic circuit simulator. Students could explore the interaction of the CPU, RAM, and I/O by labeling a diagram of the von Neumann architecture. Alternatively, students could design higher-level circuits using low-level logic gates (e.g., adders).
Illustrate ways computing systems implement logic through hardware components.
Descriptive Statement:
Computing systems use processors (e.g., a central processing unit or CPU) to execute program instructions. Processors are composed of components that implement the logical or computational operations required by the instructions. AND, OR, and NOT are examples of logic gates. Adders are examples of higher-leveled circuits built using low-level logic gates. Students illustrate how modern computing devices are made up of smaller and simpler components which implement the logic underlying the functionality of a computer processor. At this level, knowledge of how logic gates are constructed is not expected. For example, students could construct truth tables, draw logic circuit diagrams, or use an online logic circuit simulator. Students could explore the interaction of the CPU, RAM, and I/O by labeling a diagram of the von Neumann architecture. Alternatively, students could design higher-level circuits using low-level logic gates (e.g., adders).
Standard Identifier: 9-12S.CS.2
Grade Range:
9–12 Specialty
Concept:
Computing Systems
Subconcept:
Hardware & Software
Practice(s):
Communicating About Computing (7.2)
Standard:
Categorize and describe the different functions of operating system software.
Descriptive Statement:
Operating systems (OS) software is the code that manages the computer’s basic functions. Students describe at a high level the different functions of different components of operating system software. Examples of functions could include memory management, data storage/retrieval, processes management, and access control. For example, students could use monitoring tools including within an OS to inspect the services and functions running on a system and create an artifact to describe the activity that they observed (e.g., when a browser is running with many tabs open, memory usage is increased). They could also inspect and describe changes in the activity monitor that occur as different applications are executing (e.g., processor utilization increases when a new application is launched).
Categorize and describe the different functions of operating system software.
Descriptive Statement:
Operating systems (OS) software is the code that manages the computer’s basic functions. Students describe at a high level the different functions of different components of operating system software. Examples of functions could include memory management, data storage/retrieval, processes management, and access control. For example, students could use monitoring tools including within an OS to inspect the services and functions running on a system and create an artifact to describe the activity that they observed (e.g., when a browser is running with many tabs open, memory usage is increased). They could also inspect and describe changes in the activity monitor that occur as different applications are executing (e.g., processor utilization increases when a new application is launched).
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881