Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 1 - 10 of 34 Standards

Standard Identifier: K-2.AP.10

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.2, 4.4)

Standard:
Model daily processes by creating and following algorithms to complete tasks.

Descriptive Statement:
Algorithms are sequences of instructions that describe how to complete a specific task. Students create algorithms that reflect simple life tasks inside and outside of the classroom. For example, students could create algorithms to represent daily routines for getting ready for school, transitioning through center rotations, eating lunch, and putting away art materials. Students could then write a narrative sequence of events. (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3) Alternatively, students could create a game or a dance with a specific set of movements to reach an intentional goal or objective. (P.E K.2, 1.2, 2.2) Additionally, students could create a map of their neighborhood and give step-by-step directions of how they get to school. (HSS.K.4, 1.2, 2.2)

Standard Identifier: K-2.AP.12

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Control
Practice(s): Creating Computational Artifacts (5.2)

Standard:
Create programs with sequences of commands and simple loops, to express ideas or address a problem.

Descriptive Statement:
People create programs by composing sequences of commands that specify the precise order in which instructions should be executed. Loops enable programs to repeat a sequence of commands multiple times. For example, students could follow simple movements in response to oral instructions. Students could then create a simple sequence of movement commands in response to a given problem (e.g., In how many ways can you travel from point A to point B?) and represent it as a computer program, using loops to repeat commands. (VAPA Dance K.1.4, 1.2.3, 1.2.5, 1.2.8, 2.2.1, 2.2.2, 2.2.3) Alternatively, on a mat with many different CVC words, students could program robots to move to words with a similar vowel sound. Students could look for multiple ways to solve the problem and simplify their solution by incorporating loops. (CA CCSS for ELA/Literacy RF.K.2.D, RF.1.2.C)

Standard Identifier: K-2.AP.13

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Modularity
Practice(s): Recognizing and Defining Computational Problems (3.2)

Standard:
Decompose the steps needed to solve a problem into a sequence of instructions.

Descriptive Statement:
Decomposition is the act of breaking down tasks into simpler tasks. For example, students could break down the steps needed to make a peanut butter and jelly sandwich, to brush their teeth, to draw a shape, to move a character across the screen, or to solve a level of a coding app. In a visual programming environment, students could break down the steps needed to draw a shape. (CA CCSS for Mathematics K.G.5, 1.G.1, 2.G.1) Alternatively, students could decompose the planning of a birthday party into tasks such as: 1) Decide when and where it should be, 2) List friends and family to invite, 3) Send the invitations, 4) Bake a cake, 5) Decorate, etc.

Standard Identifier: K-2.CS.1

Grade Range: K–2
Concept: Computing Systems
Subconcept: Devices
Practice(s): Fostering an Inclusive Computing Culture (1.1)

Standard:
Select and operate computing devices that perform a variety of tasks accurately and quickly based on user needs and preferences.

Descriptive Statement:
People use computing devices to perform a variety of tasks accurately and quickly. Computing devices interpret and follow the given instructions literally. Students select and operate an appropriate computing device and corresponding program or app for a given task. For example, students could use computing devices to describe what plants and animals (including humans) need to survive. In this case, students could choose to use a keyboard to type explanatory sentences onto graphics. They could also choose to use a touchscreen device with a stylus to annotate an image for a slideshow, or choose to use a camera enabled device to make a video. Student choices may reflect their own needs or the needs of others. (CA NGSS: K-LS1-1; 2-LS4-1) Alternatively, students could choose to use a computing device with audio recording capabilities to recount stories or poems. Students could clarify thoughts, ideas, or feelings via their preference of either using a device with digital drawing tools, or by creating paper and pencil drawing based on their needs and preferences. (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5)

Standard Identifier: K-2.CS.2

Grade Range: K–2
Concept: Computing Systems
Subconcept: Hardware & Software
Practice(s): Communicating About Computing (7.2)

Standard:
Explain the functions of common hardware and software components of computing systems.

Descriptive Statement:
A computing system is composed of hardware and software. Hardware includes the physical components of a computer system. Software provides instructions for the system. These instructions are represented in a form that a computer can understand and are designed for specific purposes. Students identify and describe the function of hardware, such as desktop computers, laptop computers, tablet devices, monitors, keyboards, mice, trackpads, microphones, and printers. Students also identify and describe common software applications such as web browsers, games, and word processors. For example, students could create drawings of a computing system and label its major components with appropriate terminology. Students could then explain the function of each component. (VAPA Visual Arts 2 5.0) (CA CCSS for ELA/Literacy SL.K.5, SL.K.6, SL.1.5, SL.1.6, SL.2.5, SL.2.6) Alternatively, students could each be assigned a component of a computing system and arrange their bodies to represent the system. Students could then describe how their assigned component functions within the system. (P.E.K.1, 1.1)

Standard Identifier: 3-5.AP.10

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Recognizing and Defining Computational Problems, Testing and Refining Computational Artifacts (3.3, 6.3)

Standard:
Compare and refine multiple algorithms for the same task and determine which is the most appropriate.

Descriptive Statement:
Different algorithms can achieve the same result, though sometimes one algorithm might be more appropriate for a specific solution. Students examine different ways to solve the same task and decide which would be the better solution for the specific scenario. For example, students could use a map and create multiple algorithms to model the early land and sea routes to and from European settlements in California. They could then compare and refine their algorithms to reflect faster travel times, shorter distances, or avoid specific characteristics, such as mountains, deserts, ocean currents, and wind patterns. (HSS.4.2.2) Alternatively, students could identify multiple algorithms for decomposing a fraction into a sum of fractions with the same denominator and record each decomposition with an equation (e.g., 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8). Students could then select the most efficient algorithm (e.g., fewest number of steps). (CA CCSS for Mathematics 4.NF.3b) Additionally, students could compare algorithms that describe how to get ready for school and modify them for supporting different goals including having time to care for a pet, being able to talk with a friend before classes start, or taking a longer route to school to accompany a younger sibling to their school first. Students could then write an opinion piece, justifying with reasons their selected algorithm is most appropriate. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)

Standard Identifier: 3-5.AP.12

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Control
Practice(s): Creating Computational Artifacts (5.2)

Standard:
Create programs that include events, loops, and conditionals.

Descriptive Statement:
Control structures specify the order (sequence) in which instructions are executed within a program and can be combined to support the creation of more complex programs. Events allow portions of a program to run based on a specific action. Conditionals allow for the execution of a portion of code in a program when a certain condition is true. Loops allow for the repetition of a sequence of code multiple times. For example, students could program an interactive map of the United States of America. They could use events to initiate a question when the user clicks on a state and conditionals to check whether the user input is correct. They could use loops to repeat the question until the user answers correctly or to control the length of a "congratulations" scenario that plays after a correct answer. (HSS.5.9) Alternatively, students could write a math fluency game that asks products of two one-digit numbers and then uses a conditional to check whether or not the answer that was entered is correct. They could use a loop to repeatedly ask another question. They could use events to allow the user to click on a green button to play again or a red button to end the game. (CA CCSS for Mathematics 3.OA.7) Additionally, students could create a program as a role-playing game based on a literary work. Loops could be used to animate a character's movement. When reaching a decision point in the story, an event could initiate the user to type a response. A conditional could change the setting or have the story play out differently based on the user input. (CA CCSS for ELA/Literacy RL.5.3)

Standard Identifier: 3-5.AP.13

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Modularity
Practice(s): Recognizing and Defining Computational Problems (3.2)

Standard:
Decompose problems into smaller, manageable tasks which may themselves be decomposed.

Descriptive Statement:
Decomposition is the act of breaking down tasks into simpler tasks. This manages complexity in the problem solving and program development process. For example, students could create an animation to represent a story they have written. Students write a story and then break it down into different scenes. For each scene, they would select a background, place characters, and program actions in that scene. (CA CCSS for ELA/Literacy W.3.3, W.4.3, W.5.3) Alternatively, students could create a program to allow classmates to present data collected in an experiment. For example, if students collected rain gauge data once per week for 3 months, students could break down the program tasks: 1) ask the user to input 12 weeks' worth of data, 2) process the data (e.g., add the first four entries to calculate the rain amount for month 1, convert to metric system measurements), and 3) direct the creation or resizing of objects (e.g., one rectangular chart bar for each month) to represent the total number of rainfall for that month. (CA NGSS: 3-ETS-1-2) (CA CCSS for Mathematics 3.MD.2)

Standard Identifier: 3-5.AP.14

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Modularity
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.3)

Standard:
Create programs by incorporating smaller portions of existing programs, to develop something new or add more advanced features.

Descriptive Statement:
Programs can be broken down into smaller parts, which can be incorporated into new or existing programs. Students incorporate predefined functions into their original designs. At this level, students do not need to understand all of the underlying implementation details of the abstractions that they use. For example, students could use code from a ping pong animation to make a ball bounce in a new basketball game. They could also incorporate code from a single-player basketball game to create a two-player game with slightly different rules. Alternatively, students could remix an animated story and add their own conclusion and/or additional dialogue. (CA CCSS for ELA/Literacy W.3.3.B, W.3.3.D, W.4.3.B, W.4.3.E, W.5.3.B, W.5.3.E) Additionally, when creating a game that occurs on the moon or planets, students could incorporate and modify code that simulates gravity on Earth. They could modify the strength of the gravitational force based on the mass of the planet or moon. (CA NGSS: 5-PS2-1)

Standard Identifier: 3-5.CS.1

Grade Range: 3–5
Concept: Computing Systems
Subconcept: Devices
Practice(s): Communicating About Computing (7.2)

Standard:
Describe how computing devices connect to other components to form a system.

Descriptive Statement:
Computing devices often depend on other devices or components. Students describe physical and wireless connections to other components, including both input devices (e.g., keyboards, sensors, remote controls, microphones) and output devices (e.g., 3D printers, monitors, speakers). For example, students could describe the relationship among the heart, lungs, muscles, blood, and oxygen during physical activity and then compare this to how a mouse, keyboard, printer, and desktop computer connect and interact to allow for input, processing, and output. (P.E.3.4.7) Alternatively, when describing how light reflected from objects enters the eye and is then transferred to the brain to construct a visual image, students could compare this to a computing system that uses programming to construct a visual image when data is transferred and constructed/reconstructed through a keyboard, camera, or other components. (CA NGSS: 4-PS4-2)

Showing 1 - 10 of 34 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881